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What 1s a Kalman Filter ?

Goal: Infer hidden states of dynamical models

* Inference/Estimation in dynamic models
e States normally hidden
* Observations are noisy
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Kalman Filter

Common Applications
Tracking, control, data fusion...

Advantages
* Tractable —> On Line (Thanks to Gaussian)
* Recursive

Disadvantages

* Gaussian Assumption (non applicable at all times)
* Linear dynamics

* Unimodal distributions




Intuitive Notion (From Least Squares)

e Goal: Find estimate a of state a
such that the least square
error between measurements

and the state is minimum State variab|1
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Example from Cornelia Fermiiller



Intuitive Notion (2)

e We don't want to wait until

all data have been collected Measurement

to get an estimate a of the I
depth

X

* We don 't want to reprocess State variab
old data when we make a

d
new measurement

e Recursive method: data at

step i are obtained from
data at step i-1
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Example from Cornelia Fermiiller




Intuitive Notion (3)

e Recursive method: data at
step i are obtained from

data at Step i-1
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Example from Cornelia Fermiiller



Intuitive Notion

Gain | .
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Estimate at step i 1

Innovation
(Gain specifies how much

do we pay attention

to the difference

between what we expected

and what we actually get

Example from Cornelia Fermiiller



Starting From Bayes Filter
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From Bayes To Kalman

KF Prediction:
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When things go non linear - Extended
Kalman Filter

Motion model: xt=g(xt_1)+et

Observation model: 2, =h(x,)+9,

Taylor's Expansion:
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Extended Kalman Filter
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Alternatives (1)

Unscented Kalman Filter (Julier et. al 97)

* Easier to approx. Gaussian than linearizing

* deterministic sampling -> Propagate points non linearly
* Unscented Transform

* Relatively untested under experiments

Advantages

e Handle non linearities better
* Easier to implement

Disadvantages

* Gaussian assumption still holds
* Many parameters to tune (3)




Alternatives (2)

Particle Filters
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* Nonlinear * Degeneracy problems
* multimodal * Number of particles?

Taken from Van der Merwe et al.



Conclusion

e Kalman filter similar to least squares
* Bayesian filter -> Kalman filter

* Advantages and Disadvantages

* Unscented KF

* Particle Filters

* Humans are not perfect, so are our mathematics




