High Altitude Decompression Research and Diving Tables

by Beat A. Mueller, MSc. Mech. Eng. ETH

Table of Content

- A tribute to Prof. Bühlmann
- About the Model behind
- High Altitude Diving Trials of the Swiss Army 1969 (→ tables of 1973/76)
- The `86 Air Diving Tables
- Tools and Technical Support behind
- Lake Titicaca Trials (1987)
- Lago di Lucendro Trials (1984-88)
- Muttsee Trials (1988)
- Dives at Mount Kenia (1988)
- Practical Applications and special Environments
- Results and consequences
- Appendices (not showed during presentation, but included in full ppt- and pdf-Version)

Appendices (not shown)

Prog	ram ar	nd Fac	culty I	Members	of the
Sym	posiun	n <mark>201</mark> 9			

• References	(4 frames
--------------	-----------

- **Further Publications** (3 frames)
- The Deep Diving Research Laboratory of the University Hospital of Zurich (DKL)
- Early Deep Diving Trials
- Perfusion- and Diffusion based models
- The Linear Perfusion Models ZHL-12/16
- **Parametric NDL calculations today**
- Parameters for Bühlmann `86 Air Diving **Tables and later developments**
- Results and consequences (details)
- **Barometric Pressure as a function of Altitude**
- **Seawater Density**
- **Deco Brain Trials**
- **Decompression Problems in Space**
- **About the Author**

(4 frames)

(15 frames)

(6 frames)

(6 frames)

(8 frames)

(6 frames)

(3 frames)

(9 frames)

(2 frames)

(2 frames)

(9 frames)

(6 frames)

(3 frames)

VEREIN HISTORISCHES DRUCKKAMMERLABOR UNIVERSITÄTSSPITAL ZÜRICH (DKL-USZ)

Pressemitteilung

Horgen, 12.01.2017

Bühlmann's Forschungsdruckkammer vom Untergang bedroht.

Beschäftigt man sich mit der Anschaffung eines Tauchcomputers, stösst man praktisch automatisch auf das "Bühlmann-Modell". Die Druckkammer, in dem diese Dekompressionsalgorithmen entwickelt wurden, ist akut von der Verschrottung bedroht.

Ein Grossteil der heute verkauften Tauchcomputer arbeitet mit Dekompressionsalgorithmen, die auf dem Bühlmann-Modell basieren. Prof. Albert Bühlmann verfügte ab 1974 über eine Forschungsdruckkammer am Universitätsspital Zürich (USZ), in der er seine Berechnungen bis auf Tiefen von über 500m überprüfen konnte. Der Tauchpionier Hannes Keller, der als erster Mensch im Freiwasser die 300m Grenze mit Heliox überschritt, gab den Anstoss zur tauchmedizinischen Forschung in der Schweiz. Für die Ölindustrie war diese Tiefe notwendig um am Rand der Kontinentalschelfe nach Öl bohren zu können. Deswegen finanzierte sie den Bau des Druckkammlaboratoriums grösstenteils. Der Aviatik-Ingenieur Benno Schenk konstruierte eine Druckkammer die aus einem zylindrischen Teil mit Vorkammer und zwei Kugeln bestand, von denen eine mit Wasser gefüllt war, um "nasse" Tauchgänge zu ermöglichen. Sie wurde komplett in der Schweiz hergestellt und konnte sowohl Druckverhältnisse herstellen, wie sie in 1000 Meter Wassertiefe herrschen, als auch solche in 10'000 Meter Höhe über dem Meeresspiegel, was das Laboratorium für die Erforschung höhenmedizinischer Fragestellungen ebenso nutzbar machte. Nachdem in diesem Laboratorium und im Freiwasser international bedeutende Erkenntnisse gewonnen wurden, die teilweise bis heute Gültigkeit besitzen, führten Sparzwänge am USZ letztlich dazu, dass die Kammer im Jahr 2005 geschlossen werden musste. Die Druckkammer existiert zwar noch, ist aber inzwischen nicht mehr betriebsfähig. Im Zuge der umfangreichen Baumassnahmen am USZ wird das Gebäude in dem sich das ehemalige Labor befindet in einigen Jahren abgerissen und die eindrucksvollen Reste dieser Experimental-Druckkammer sollen verschrottet werden. Eine Gruppe aus ehemaligen Mitarbeitern, Probanden der Tieftauchversuche, Tauchern und Tauchmedizinern versucht die Kammer vor dem Schmelzofen zu bewahren und sie als Hauptexponat für eine Museumsabteilung über die Dekompressionsforschung "made in Switzerland" zu erhalten. Unter der URL www.druckkammer.ch gibt es weitere Infos inklusive Fotogalerie und geschichtlichem Überblick.

Ansprechpartner: Christian Wölfel Mättenbergstrasse 6A 3367 Thörigen T +41 78 849 41 07 F +41 62 916 37 91 christian.woelfel@bluewin.ch http://www.druckkammer.ch Don't let the DKL die, don't leave it to the cutting torches!

You can change it!

Questions?

Due to our tight schedule, please ask me during the breaks or the socializing part of this event.

an Dritte weitergegeben. Bitte leserlich in Druckbuchstaben sch	a wetransfer.com an die angegebene eMail-Adresse. Di rreiben!	ese wird nicht
Name , Vorname	eMail Adresse	PDF PPT
		\overline{n}
		<u> </u>
		\sqcup \sqsubseteq
		$\neg \vdash$
		HH

You want a copy of the complete presentation in ppt- OR in pdf-format? Leave me your email address and you'll get one!

Bühlmann Memorial Symposium 2019 A tribute to Prof. A.A. Bühlmann

A tribute to Prof. Dr. A.A. Bühlmann

Muttsee high altitude trials.

1988

In the person of Prof. Dr. Buehlmann, Switzerland as a country with no access to any sea, is lucky enough to have an expert of worldwide reputation, accepted as a leading scientist in the field of hyperbaric research not only by the vaste diving community and scientific organisations, but also by many governmental bodies such as the US-NAVY, the German Navy and the American NASA. The author therefor still feels that the opportunity to work together with Prof.Buehlmann during more than 5 years was a unique chance, a lifelong lasting experience and some kind of undeserved luck.

> Statement made at the Diving Officers Conference of the Irish Underwater Council November 1991, Dun Loaghaire, Ireland

...and it still holds true!

Personal Contributions

Zweite, völlig überarbeitete und stark erweiterte Auflage

Hem B. Kille visil bundele Bank fix Here Reclar lief 65 - on rows Paballe

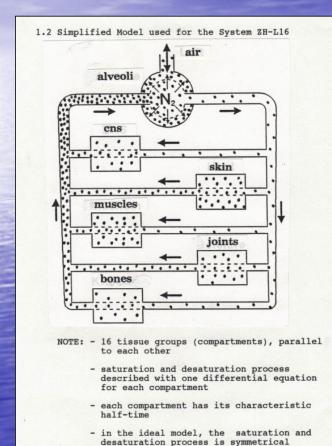
rend Here Einsa to Bi

der Tandycingen in

Bergreen ~ de Solanes &

rend in den Aude.

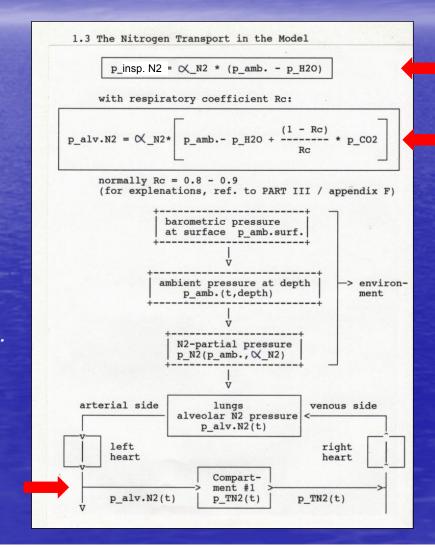
Zirich, 27.8.90



About the modell behind(1)

(is NOT true in reality)

ZH: Zuerich L: linear 16: tissue groups 1. The Haldane Compartment Model 1.1 Blood Flow in various Tissues and Organs (influence of physical activities) NOTES: - values for rest: left column " work: right column - blood flow in liters/minute/kg body weight I/min/kg KG bones 0,03 - 0,06 joints 0,04 - 0,10 skin, fat upper body 0,04 - 0,40 muscles lungs, heart 0,70 - 2,0 (chest area) kidneys mintest. liver lower body 0,04 - 0,40 skin, fat 0,04 - 0,10 0,03 - 0,06 joints

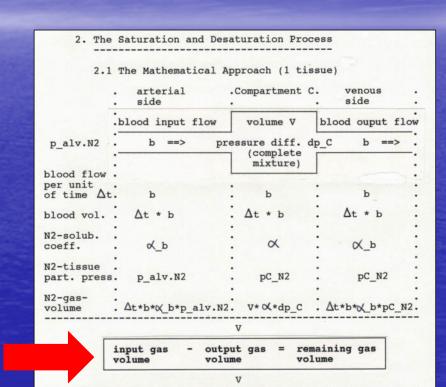

ZHL-16 is a "simple" *perfusion, dissolved phase model* that does not account for diffusion effects and bubble mechanics…but it works quite well!

Further concepts: → Appendices

About the modell behind(2)

Calculation "path" of the inert gas (e.g. nitrogen) transport to the different tissue groupes, characterized by their half-times.

Each compartment has identical inert gas pressure level as "input", inpendent of the state of adjecent tissues



inert gas pressure in breathing gas

alveolar inert gas pressure

About the modell behind(3)

- One differential equation (and a solution) for each compartment (tisssue-group)
- All compartments act independently of their neighbour compartments
- "inbound" inert gas partial pressure is identical for all compartments (all compartments parallel)
- Saturation and desaturation is mirror-like inverse to each other (not exactly true in reality due to shunt effects etc.)

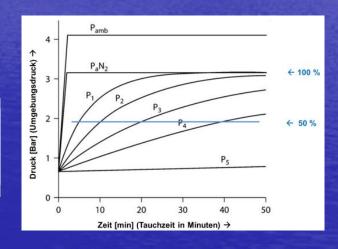
simplified; or rectangular ambient pressure change

(for rectangular ambient pressure change only)

 $\Delta t = t1 - t0$ p_TN2: tissue pressure t_h: tissue halftime b * (X b ln(2))

$$k = \frac{b * \bigcirc b}{V * \bigcirc c} = \frac{\ln(2)}{1 - \ln(2)}$$

$$V * \bigcirc c = \frac{\ln(2)}{t - \ln(2)}$$
(tissue constant)

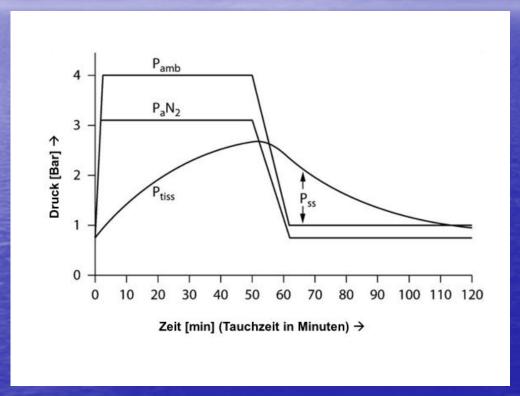

About the modell behind(4)

$$dP_t(t)/dt = k[P_{alv}(t) - P_t(t)]$$

LDE: linear differential equation

$$P_{t}(t) = P_{alv0} + [P_{t0}-P_{alv0}] e^{-kt}$$

Solution for $\Delta P = const.$: Haldane equation

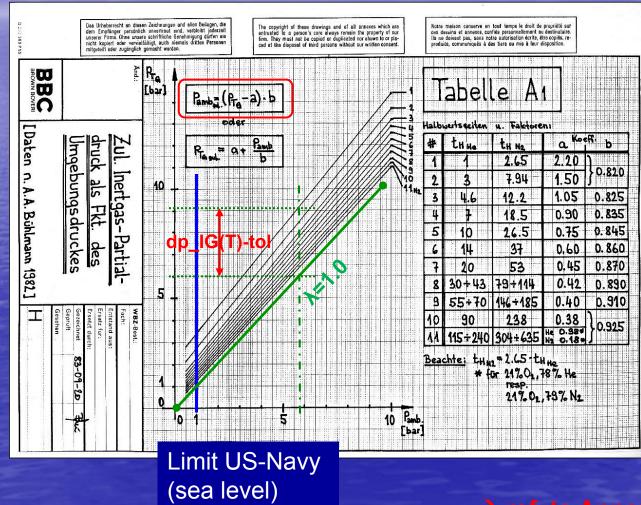


$$P_t(t) = P_{alv0} + R[t - 1/k] - [P_{alv0} - P_{t0} - R/k] e^{-kt}$$

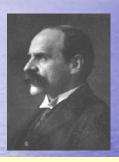
Solution for $\Delta P / \Delta t = const.$: Schreiner equation

source: A. Salm (www.divetable.info)

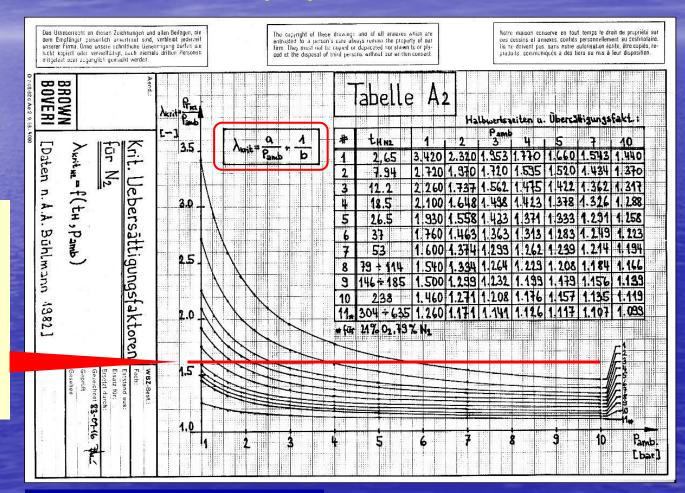
About the modell behind(5)



Courtesy of Dr. David A. Doolette, USN NEDU: Doolette, D. J. and Mitchell, S. J. 2010. Hyperbaric Conditions. Comprehensive Physiology. 1:163–201.

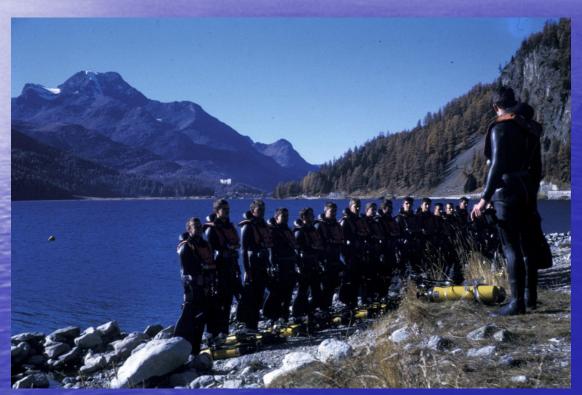

source: A. Salm (www.divetable.info)

About the modell behind (6a)


Tissue half-times, coefficients a, b to determine the ratio between ambient pressure and max. inert gas tissue pressure (similar to M-values of US-Navy tables)

About the modell behind (6b)

Haldane: Factor = 1.58 (2 x 0.79) for all tissues; overly conservative for shorter halftimes, critical for longer ones

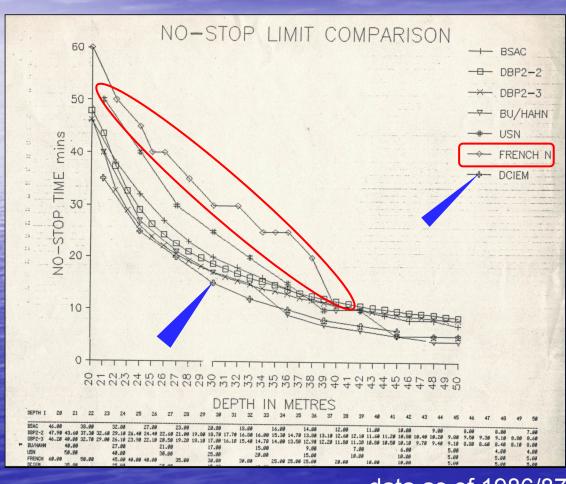


Tissue half-times, critical over-saturation ratios

High Altitude Diving Trials of the Swiss Army (1969)

High Altitude Diving Trials of the Swiss Army (1)

Lake Silvaplana, 1800 m a.s.l.

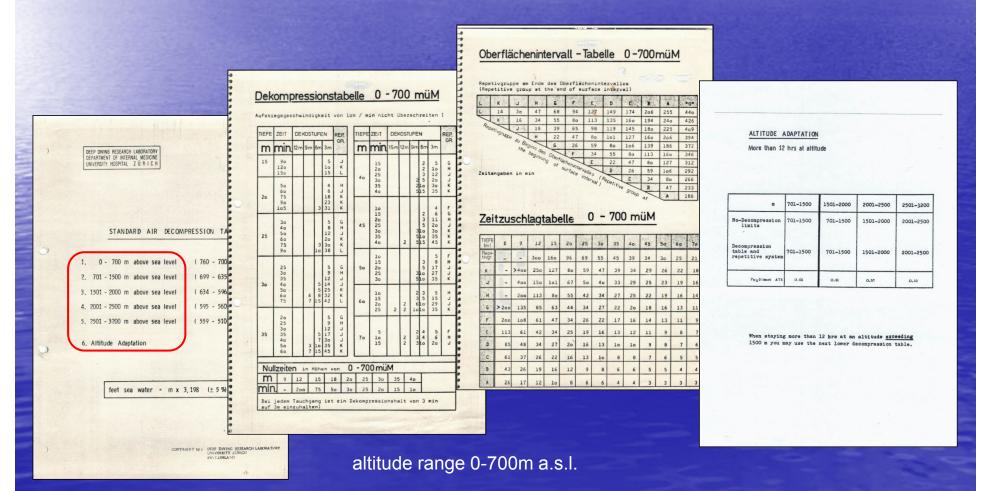

....using the French
G.E.R.S. tables and with
disastrous results....

(2 out of 8 divers suffered from severe DCS)

It is not known whether the sea-level GERS tables have been modified (adapted to altitude) or not.

→ Appendices: References

High Altitude Diving Trials of the Swiss Army (2)

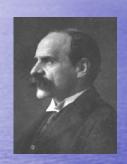

data as of 1986/87

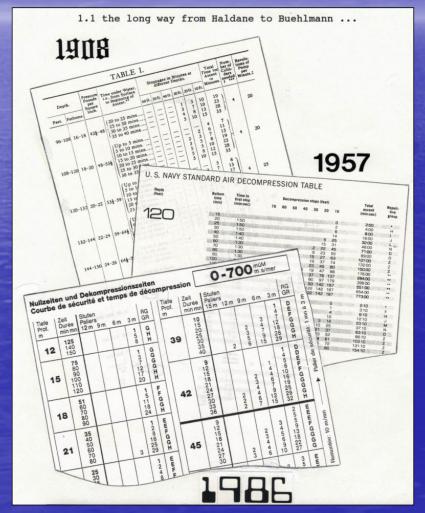
In hindsight, it is obvious that the GERS table imust have some inconsistencies with no link to physiological reasons! Also interesting: Canadian DCIEM uses a SERIAL compartment model and is very close to Bühlmann.

High Altitude Diving Trials of the Swiss Army (3)


As a result of the follow-up research, the air diving tables of 1976 were created

High Altitude Diving Trials of the Swiss Army (4)


The famous `76 disk


Bühlmann Memorial Symposium 2019 The '86 Air Diving **Tables**

The `86 Air Diving Tables: Historical Development (1)

Bühlmann air diving tables `76 not shown here...

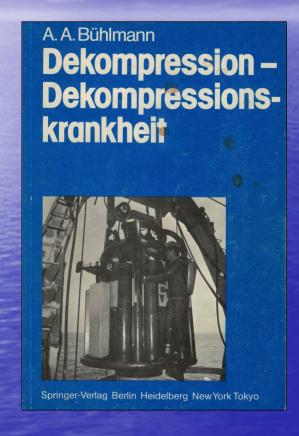
(<< DCIEM Air Decompression Tables 1983)

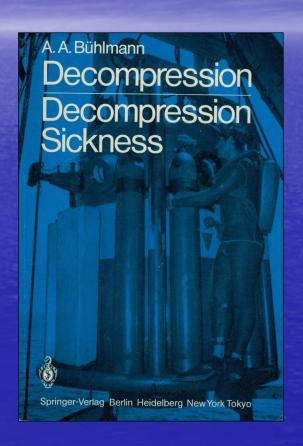
(<< intermediate version
"tables `83 with ZHL-12)</pre>

(<< with ZHL-16)

The '86 Air Diving Tables: Historical Development (2)

Situation as of october 1991....


- 1. Historical Background and Table-Development
 - 1.1 Overview on "Popular" Dive Tables
 - a) "old" tables:
 - * US-NAVY, 1937, 1957 (sea level) incl. derivatives used by NAUI, PADI, metric versions, partly modified
 - * GERS, 1965
 - * diff. tables issued by ministry of health and labour (France, Germany)
 - * modified tables from SEEMANN, DRAEGER (no background information)
 - b) tables of the seventies:
 - * Buehlmann '76, (first tables for altitude, multitissue-model)
 - plus some obscure, non-authorised "modifications"
 * RNPL (Royal Navy), 1972 (one-tissue mod.,sea
 level)

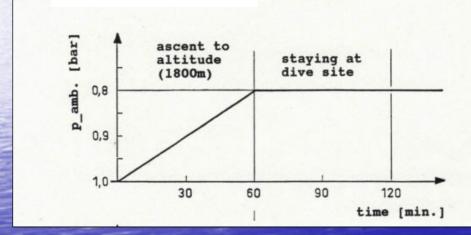

In the meantime (2019), many organisations have published many tables, many of them with a undisclosed or fishy background.

Some of them obviously "created" with a total lack of physiological competence and ruled by the fear of law-suits!

- c) newest generation tables:
- # Canadian Dept. of National Defense/ DCIEM, 1983/85 (multi-tissue, altitude)
- # Huggins, USA, 1981 (sea level, no-decompression dives only, modified Navy-model)
- # Buehlmann, Switzerland, 1986/87 (ZHL-L12/16 system, high altitudes, flying)
- # PADI, USA, 1987 (sea level, no-decompression dives only)
- # BSAC, GB, 1988 (sea level, no info on model and safety factors, fixed surface intervals)
- # NAUI, USA, 1989 (sea level, no-decompression dives only, modified Navy-model)
- # COMEX PRO, France, 1991 (sea level, no info on model or safety factors, fixed surface intervals)

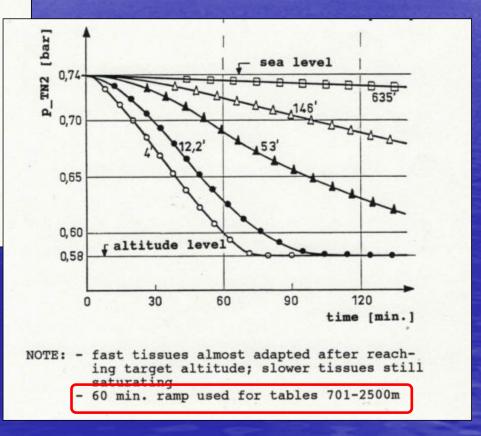
The '86 Air Diving Tables: The Trigger

Publication of the "new" Air Diving Tables of 1983, based on the compartment modell ZHL-12 with 16 compartments and 12 different pairs of coefficients.


The `86 Air Diving Tables: Initialization

Zürich, den 17. Juni 1986 geht an: - alle Teilnehmer - Herrn H. Binkert, Reg. Chef DRS - Herrn H.R. Elsener, Chef TK z.K : - Chefinstruktor SUSV - Mitglieder des Instruktorenausschusses Besprechungsprotokol1 : Medizin. Universitätsklinik Zürich / Prof. A.A. Bühlmann : 08.05.1986 von 9.00 Uhr bis 12.15 Uhr Teilnehmer: Prof. Dr. A.A. Bühlmann, Medizin. Leiter des DKL Dr. M. Hahn (M***VDST, Leiter Fachreferat Tauchwissenschaften) Herr G. Götte, Instruktor SUSV, Sachbearbeiter in der Angelegenheit "Einführung von neuen Tabellen" und Gesprächs-Herr D. Gehlhaar, Instruktor SUSV, Mitglied des Instruktorenaus-Herr B. Müller, M** SUSV, in beratender Funktion und Protokoll-Gegenstand des Treffens: s. Schreiben (Einladung) von G. Götte vom 06.05.1986 Pfliddelief his die wenen Tandotabellen Inhalt des Protokolls: 1. Zusammenfassung 2. Ausgangslage 3. Pflichtenheft der neuen Tabellen (Grundlagen und Design) 4. weiteres Vorgehen

Kick-off Meeting:
defined and detailed
specifications for the
new tables to be
created and
to be adopted by the
Swiss Underwater
Sports Federation

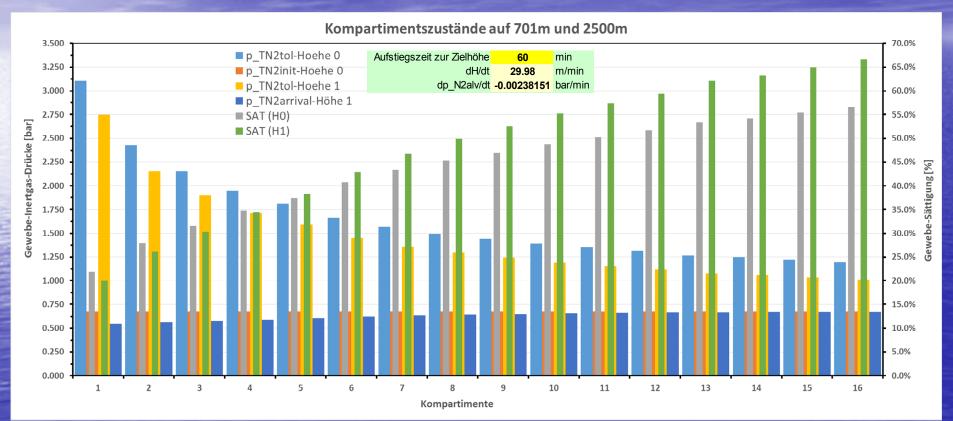

The `86 Air Diving Tables: The Ascent Ramp (1)

7. Adaption at Altitude (pre-dive history)

Start at 0m asl. with all compartments fully adapted; immediate dive at altitude upon arrival.

For the 86 table, a ramp of 1hr from 700m to 2500m a.s.l. was assumed. Desaturation was calculated with strict solution of differential equation.

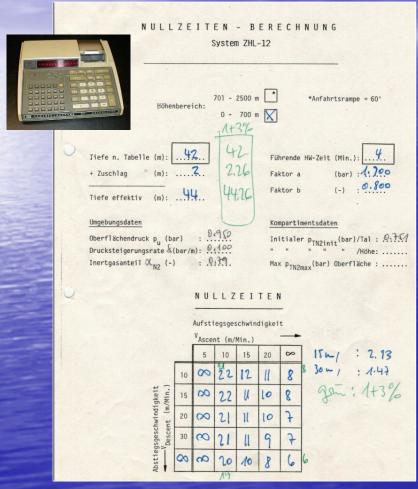
Diagrams courtesy of Dr. K. Meier-Ewert

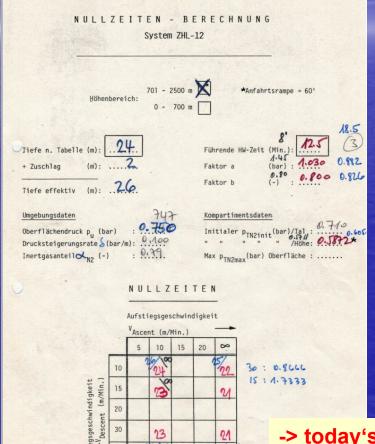

The `86 Air Diving Tables: The Ascent Ramp (2a)

ıfstiegszeit z			min			Start-Höhe 0	701	m	Ziel-Höhe H1		m
	dH/dt		m/min			pamb	0.931	bar	pamb		bar
dp_N2alv/dt						f_N2	0.790		f_N2		 h
						pN2-insp		bar bar	pN2-insp		bar bar
ZHL-16B tH RG a b k						pN2-alv p_TN2tol- Hoehe 0	p_TN2init- Hoehe 0	SAT (H0)	pN2-alv p_TN2tol- Hoehe 1	0.535 p_TN2arrival- Höhe 1	SAT (H1
#	[min]	Code	[bar]	[]	[1/min]	[bar]	[bar]	[%]	[bar]	[bar]	[%]
1	4	Α	1.2599	0.5050	0.17329	3.104	0.678	21.83%	2.746	0.548	19.97%
2	8	В	1.0000	0.6514	0.08664	2.430	0.678	27.89%	2.152	0.562	26.12%
3	12.5	С	0.8618	0.7222	0.05545	2.151	0.678	31.49%	1.901	0.576	30.31%
4	18.5	D	0.7562	0.7825	0.03747	1.946	0.678	34.81%	1.715	0.591	34.49%
5	27	E	0.6667	0.8126	0.02567	1.813	0.678	37.38%	1.590	0.608	38.21%
6	38.3	F	0.5600	0.8434	0.01810	1.664	0.678	40.71%	1.450	0.622	42.89%
7	54.3	G	0.4947	0.8693	0.01277	1.566	0.678	43.27%	1.358	0.634	46.72%
8	77	Н	0.4500	0.8910	0.00900	1.495	0.678	45.31%	1.292	0.645	49.92%
9	109		0.4187	0.9092	0.00636	1.443	0.678	46.95%	1.244	0.653	52.53%
10	146	J	0.3798	0.9222	0.00475	1.390	0.678	48.76%	1.193	0.659	55.22%
11	187	K	0.3497	0.9319	0.00371	1.349	0.678	50.23%	1.155	0.663	57.39%
12	239	L	0.3223	0.9403	0.00290	1.313	0.678	51.62%	1.120	0.666	59.43%
13	305	М	0.2850	0.9477	0.00227	1.268	0.678	53.45%	1.077	0.668	62.06%
14	390	Ν	0.2737	0.9544	0.00178	1.249	0.678	54.23%	1.060	0.670	63.23%
15	498	0	0.2523	0.9602	0.00139	1.222	0.678	55.44%	1.034	0.672	64.98%
16	635	Р	0.2327	0.9653	0.00109	1.197	0.678	56.58%	1.010	0.673	66.63%

Effect of Ascent Ramp 701->2500m a.s.l. in 60min

- Relative saturation increases significantly
- Longer –half-times do not react significantly
- Tolerated tissue pressure decreases significantly!


The '86 Air Diving Tables: The Ascent Ramp (2b)



Effect of Ascent Ramp 701->2500m a.s.l. in 60min

- Relativ saturation increases significantly
- Longer –half-times do not react significantly
- Tolerated tissue pressure decreases significantly!

The '86 Air Diving Tables: No Decompression Limits (1)

-> today's methods: ref. to Appendices!

All combinations of descent and ascent rates checked with fixed and variable safety margins for depth and for the relevant compartment half-times

The '86 Air Diving Tables: No Decompression Limits (2)

	A) NULLZEITEN									
	Tabelle									
		US-Navy 1957	GERS 1965	RNPL 1972	Bue76 1973	DCIEM 1983	Bue86 1987	PADI 1988	BSAC 1988	
	Tiefe [m]	Meer	Meer	Meer	0-700	Meer	0-700	Meer	0-250 6m-St.	
AND ALL DESCRIPTION OF THE PERSON OF THE PER	9 12 15 18 21 24 27 30 36 42	200 100 60 50 40 30 25 15	>120 75 45 30 25	137 57 32 20 14 10	200 75 50	380 175 75 50 35 25 20 15	335 125 75 51 35 25 20 17 12 9	>205 140 80 55 40 30 25 20 13	243 122 74 51 37 30 24 20 14	

New No-decompression limits; more conservative than other contemporary tables.

Most other tables NOT suitable above sea level.

GERS tables definitely off-limits.

Compare DCIEM NDL, almost identical from 15m on; DCIEM model is a serial compartment model with asymmetrical saturation / desaturation.

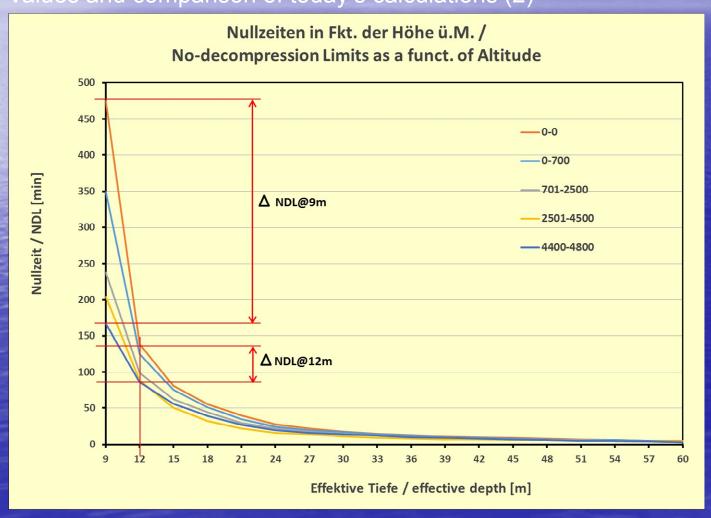
Later addendum of 1989 for long exposition times

The `86 Air Diving Tables: No Decompression Limits (3a)

Values and comparison of today's calculations (1)

Values attained by using ZHL-12 and ZHL-16B

	NDL times in [min]						
Altitude range [m a.s.l.]	0-0	0-700	701-2500	2501-4500	4400-4800		
Altitude of adaption [m a.s.l.]	0	0	701	4500	4400		
Altitude of calculated dive [m a.s.l.]	0	700	2500	4500	4800		
Ramp to upper range limit [hr]	no	no	1	no	6		
Surface Interval at dive site before dive [hr]	>24	0	0	>24	3		


Descent rate: timeless, rectangular Ascent rate: 10m/min; constant

belole c	uve [iii]	-Z 4	U	U	-Z -1	<u> </u>
	6	1473	1110	714	663	667
	9	475	349	238	204	167
	12	139	125	99	88	86
	15	81	75	62	50	56
	18	55	51	44	32	39
	21	40	35	30	22	27
	24	28	25	22	16	20
-	27	22	20	18	14	16
<u>u]</u>	30	18	17	15	11	14
oth	33	15	14	12	9	12
Depth [m]	36	13	12	10	8	10
	39	11	10	9	7	9
	42	10	9	8	7	8
	45	9	8	7	6	7
	48	8	7	6	6	6
	51	7	6	6	5	5
	54	6	6	5	5	5
	57	5	5	4	4	4
	60	5	4	4	4	3

bold values: as published on tables blue values: added by calculation

The `86 Air Diving Tables: No Decompression Limits (3b)

Values and comparison of today's calculations (2)

The '86 Air Diving Tables: all other profiles (1)

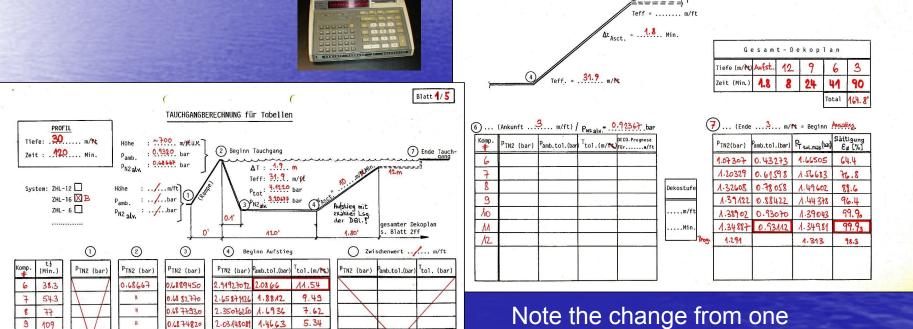
Step by step / way-point by way-point / tissue by tissue calculation for all depth time combinations

3.60

2.195

.68 72430

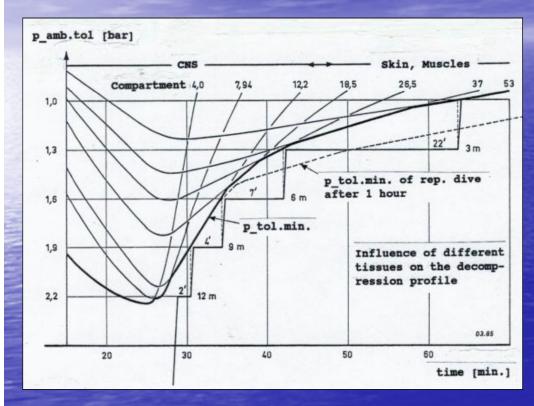
0.6871260


187

1.7808227

1.5854792

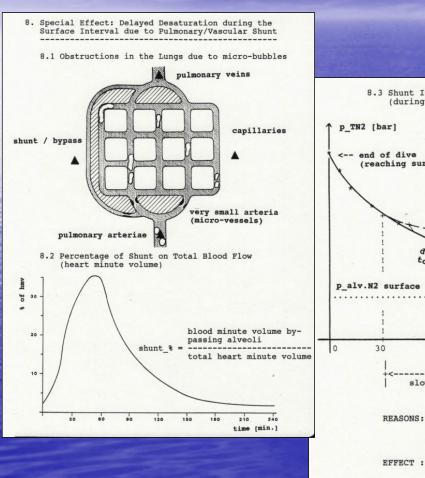
1.2920

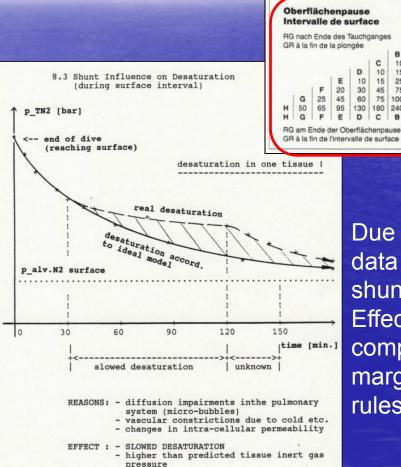

1.4516

Note the change from one leading tissue to the next or overnext one during ascent and deco stops!

7 Austies

The '86 Air Diving Tables: all other profiles (2)


NOTE: - tissues with short half-times (CNS etc.) are governing the deeper stops, tissues with longer half-times the shallower ones!
- p_tol.min. = the MAXIMUM of all tissue-related p amb.tol -> the permitted MINIMUM depth!)


6. "Leading Tissues" during the Desaturation Phase

NOTE: a leading tissue is the tissue requesting for the highest (tolerated) ambient pressure, therefor determining the ceiling (shallowest depth not to be surpassed) and the corresponding decompression stage depth.

RG at end of dive = letter code of leading tissue when surfacing. When next following tissue was also saturated to 95%+, then that letter code was taken for end-of-dive RG.

The `86 Air Diving Tables: Surface Interval (SI) table

Due to lack of scientific data at that time (!), no shunt effect included. Effect is masked and compensated by safety margins and rounding rules.

20

10 25

15 25 30 45

75 100 130

130 180 240 340

45 75 90

C

2

24

Beispiel: Wiederholungsgruppe RG F

nach Ende des Tauchganges nach 45 Minuten ist RG C,

nach 90 Minuten A erreicht

(Zwischenwerte abrunden)

zuschlag getaucht werden

de la plongée

- 4 Stunden Wartezeit bis Flug

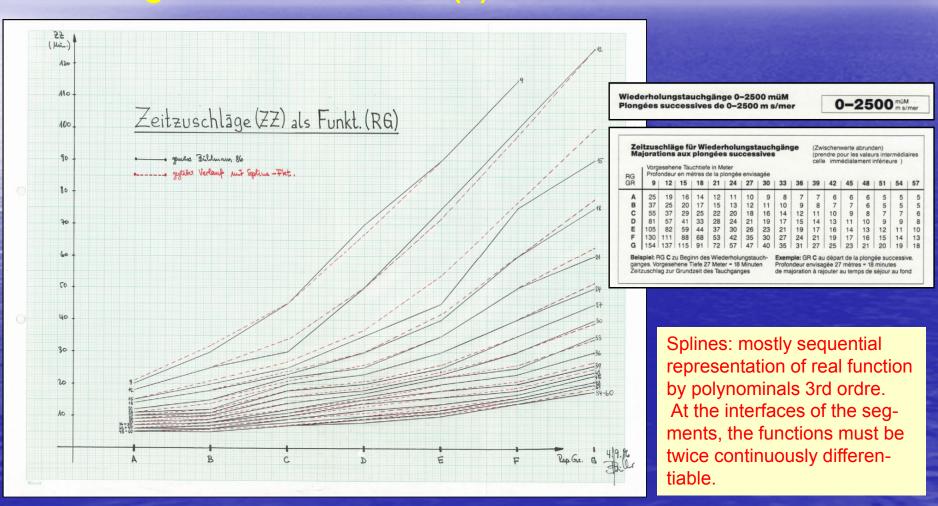
après 45 minutes F devient C,

après 90 minutes F devient A

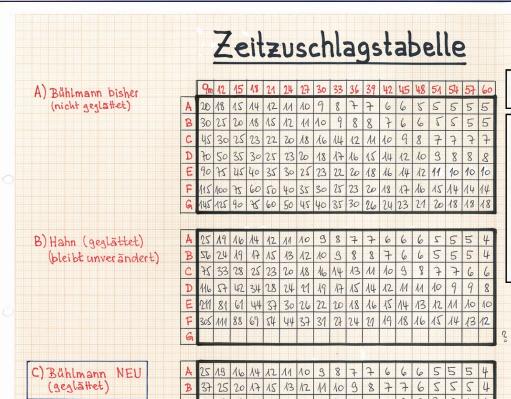
ajouter de majoration

celle immédiatement inférieure

nach 8 Stunden kann ohne Zeit-


Exemple: Groupe répétitif GR F à la fin

(prendre pour les valeurs intermédiaires


après 8 heures on peut replonger sans

temps d'attente avant l'envol: 4 heures

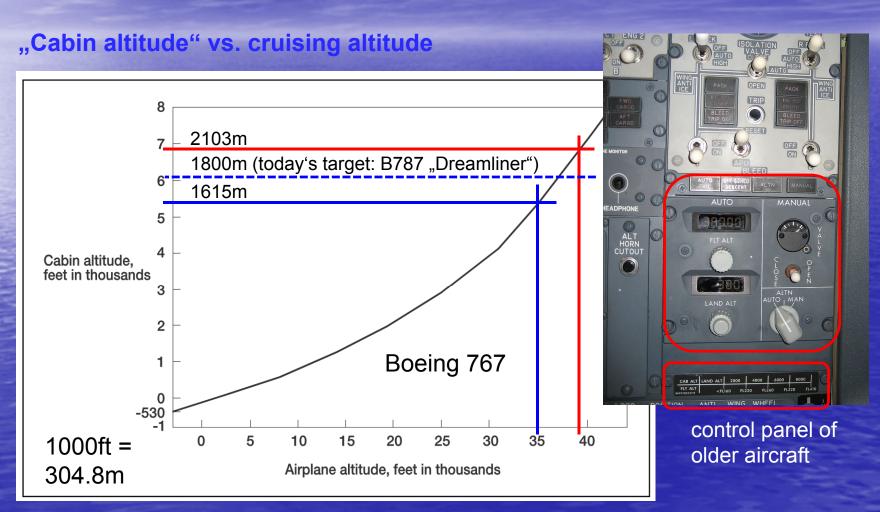
The `86 Air Diving Tables: "Smoothing" of Residual Nitrogen Time table RNT (1)

The `86 Air Diving Tables: "Smoothing" of Residual Nitrogen Time table RNT (2)

T 130 111 88 68 53 42 35 30 27 24 21 19 17 16 15

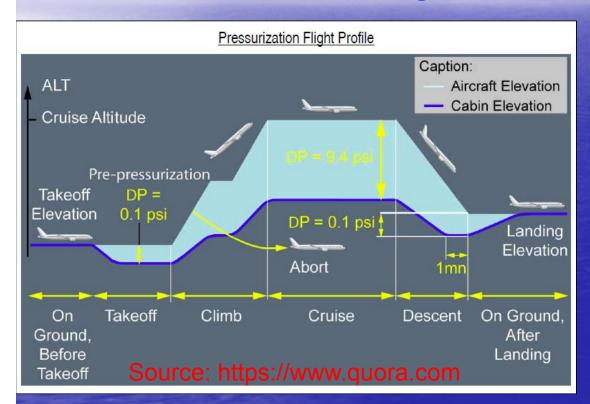
Wiederholungstauchgänge 0-2500 müM Plongées successives de 0-2500 m s/mer

0-2500 müM s/mer


RG		esehe	ne Tau	chtief	e in Me	eter					celle			ment i		rmédia ure)	aires
GR	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54	57
A	25	19	16	14	12	11	10	9	8	7	7	6	6	6	5	5	
В	37	25	20	17	15	13	12	11	10	9	8	7	7	6	5	5	
C	55	37	29	25	22	20	18	16	14	12	11	10	9	8	7	7	1
D	81	57	41	33	28	24	21	19	17	15	14	13	11	10	9	9	1
E	105	82	59	44	37	30	26	23	21	19	17	16	14	13	12	11	11
F	130	111	88	68	53	42	35	30	27	24	21	19	17	16	15	14	1:
G	154	137	115	91	72	57	47	40	35	31	27	25	23	21	20	19	11

ganges. Vorgesehene Tiefe 27 Meter = 18 Minuten Zeitzuschlag zur Grundzeit des Tauchganges

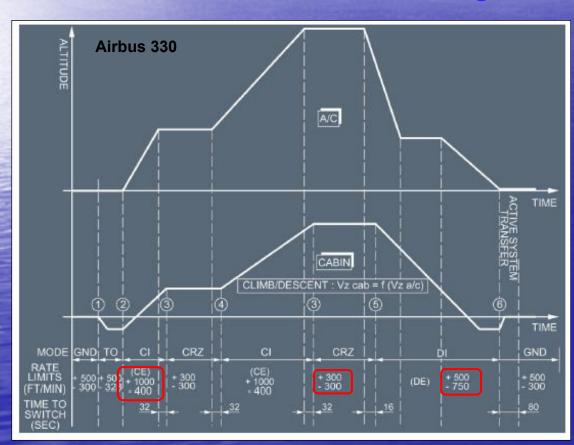
Beispiel: RG C zu Beginn des Wiederholungstauch- Exemple: GR C au départ de la plongée successive. Profondeur envisagée 27 mètres = 18 minutes de majoration à rajouter au temps de séjour au fond



The `86 Air Diving Tables: Flying after Diving (1)

The '86 Air Diving Tables: Flying after Diving (2a)

"Cabin altitude" vs. cruising altitude

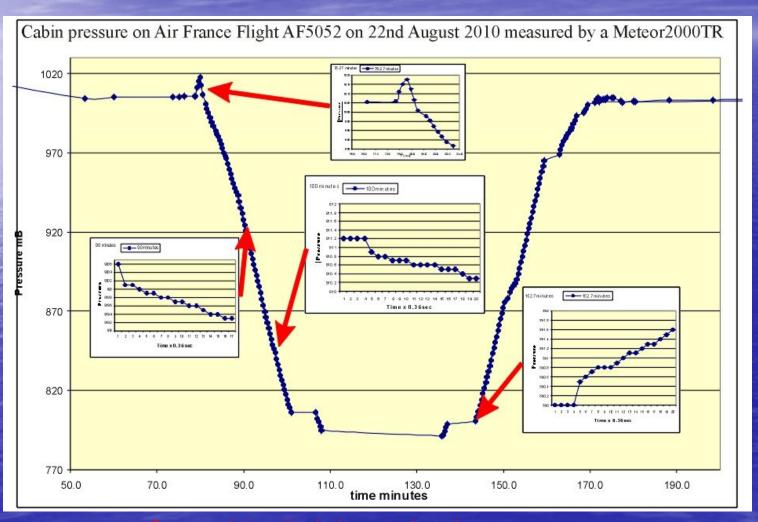

In the climb the cabin altitude increases with the airplane's altitude, though at a lower rate, meaning the cabin climbs slower, smoother and to a lower max level. Note how on the takeoff roll, the airplane starts to pressurize to 0.1 PSI differential pressure.

That means that in fact your pressure altitude inside the cabin will be above the pressure altitude of the airstrip. This guarantees a smooth transition into the climb.

This additional amount of pressure mustn't compromise the ability to quickly open the doors in case of emergency, so pressure differential is limited. On a B737-NG, the differential is 0.125 PSI (9 hPa). This is equivalent to an altitude 236 ft below the runway.

The '86 Air Diving Tables: Flying after Diving (2b)

"cabin altitude" vs. aircraft cruising altitude


Source: https://www.quora.com

On this example of an Airbus
A330 you can see the rate limits
at the bottom of the graph.
Notice how the cabin altitude will
be limited to + 1,000 feet per
minute in the climb and to - 750
feet per minute in descend.
In cruise, any adjustments will be
less than +/- 300 feet per minute.

Normal passenger aircraft climbing rates: (between 10'000 and 30'000 ft)

A320: 2000-2200 ft/min const. A319: from 3000 to 1500 ft/min A321: from 1400 to 500 ft/min

The `86 Air Diving Tables: Flying after Diving (2c)

Source: https://aviation.stackexchange.com

The `86 Air Diving Tables: Flying after Diving (3)

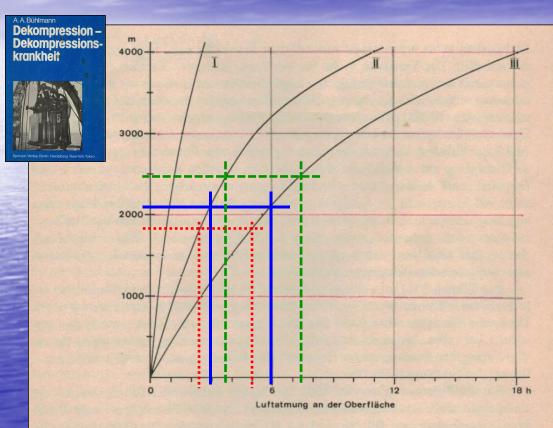


Abb. 17. Fliegen nach Tauchgängen für Sporttaucher. I = Einmalige Tauchgänge ohne Dekompression aber tiefer als 12 m in 0-700 m ü.M. oder tiefer als 9 m in der Höhe. II = Einmalige Tauchgänge ohne Dekompression bis 12 m (0-700 m ü.M.) oder bis 9 m (in der Höhe) sowie einmalige Tauchgänge mit Dekompression bis zu einer Tauchzeit von 120 min. III = Tauchzeiten länger als 120 min, repetierte Tauchgänge, "Tauchferien"

Höhe ü.M.	Höhe ü.M.	pamb-surf	pO2 Luft
[m]	[ft]	[bar]	[bar]
0	0	1.013	0.211
250	820	0.983	0.204
500	1'640	0.954	0.198
750	2'461	0.926	0.193
1'000	3'281	0.898	0.187
1'250	4'101	0.872	0.181
1'500	4'921	0.846	0.176
1'750	5'741	0.821	0.171
2'000	6'562	0.797	0.166
2'250	7'382	0.773	0.161
2'500	8'202	0.750	0.156
2'750	9'022	0.728	0.151
3'000	9'843	0.707	0.147
3'250	10'663	0.686	0.143
3'500	11'483	0.665	0.138
3'750	12'303	0.646	0.134
4'000	13'123	0.627	0.130
4'250	13'944	0.608	0.127
4'500	14'764	0.590	0.123
4'750	15'584	0.573	0.119
5'000	16'404	0.556	0.116

The `86 Air Diving Tables: Flying after Diving (4a)

Situation	cabin pressure	equivalent cabine altitude	equivalent cabine altitude
	(bar)	(m a.s.l.	(ft a.s.l.)
normal flight	0.77	2'300	7'546
max. tolerated technical deviation	0.60	4'250	13'944
max. single failure	0.55	4'800	15'748
triggering of masks	0.54	5'000	16'404
Asumption for table calculations	0.58-0.60	4'400	14'436

(data as of 1986 by Lufthansa)

For the table calculation a cabin pressure of 0.58 bar (corresp. to approx. 4600m) was assumed. This pressure is a trifle lower than the lowest possible pressure according to IATA rules (0.60bar), which is classified as a "tolerated technical deviation".

"normal" are approx. 0.77-0.8bar (approx. 2300-2000m on 35'000 to 39'000ft).

venting valve

Data of 2018

Typical values for A330:

Short flights <2.5Std.: 7460ft

Long flights: 8000ft:

Typical values for A350:

All flights: 6000ft

Typical values for B747-400:

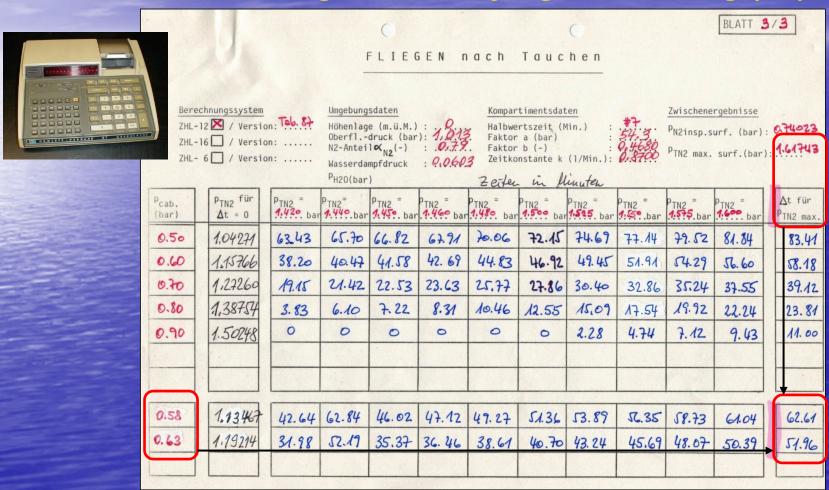
10 hrs flight

Altitude 34'00ft/10300m: 0.843bar

Altitude 40'000ft / 12'200m: 0.792bar

The `86 Air Diving Tables: Flying after Diving (4aa)

modern (B757, 767) control panel

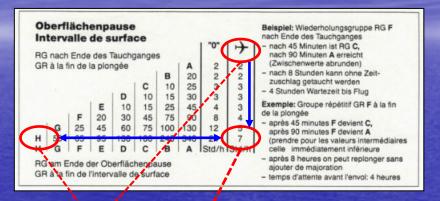

'Ladies and gentlemen, the oxygen masks have dropped down. A stewardess will be along shortly to charge you for them' If the masks drop down, you should not care too much about DCS....

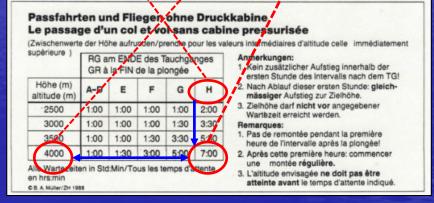
but having you credit card ready for paying the extra oxygen!

Jet Airways, B737, real incident in Mumbai

The `86 Air Diving Tables: Flying after Diving (4b)

Parametric calculation for each tissue with varying cabin pressures


The `86 Air Diving Tables: Flying after Diving (5a)



B.Mueller Vers. 1.04 /87-08-20

regulaeres Expl

HV nach TG

Result: an adequat consistent and coherent system which is – just another benefit – easy to use.

Table is intentionally limited to RG=H, because this is on the outer edge of recreational sports diving.

The `86 Air Diving Tables: Flying after Diving (5b)

(Entsättigungszeiten, Wartezeiten bis Flug)

- System ZHL-12, Koeffizienten wie P2-2
- 2. Oberflächendruck p = 0.95 bar 3. alle Gewebe zu Beginn mit p_{1/2} = 0.751 bar initialisiert 4. Abstiegsgeschwindigkeit 30m/Min.
- 5. Aufstiegsgeschwindigkeit bis 1. Dekostufe 10m/Min.
- 6. Kabinendruck 0.58 bar

Tiefe (m)	Grundzeit (Min.)		stuf 6m		Entsättigungszeit (Std.)	Wartezeit bis Flug (Std.)
9 NZ=607'	300	-	-	-	26.5	6.3
12 NZ=140.4'	120 180	- 8	-	-	18.3 24.1	3.0 5.5
15 NZ= 78.9'	75 120 180	- 18 40		-	14.9 21.9 27.5	1.6 4.6 7.0
18 NZ= 55.2'	60 90 120	4 22 36	- 2	-	14.5 20.6 24.8	1.4 4.1 5.8
21 NZ= 41.6'	35 50 70	- 7 23		-	9.8 14.2 19.3	0.6 1.3 3.5
24 NZ= 27.9'	25 40 60	- 6 25	- 2	-	7.9 12.9 19.2	0.4 0.9 3.5
27 NZ= 21.8'	22 30 40	1 4 14	1	-	7.8 10.9 14.8	0.4 0.7 1.6
30 NZ= 18.1'	20 30 40	2 7 18	1 4	-	7.9 12.2 16.6	0.4 0.9 2.4
33 NZ= 13.7'	17 25 30	2 5 12	2 3		7.4 11.2 13.7	0.3 0.7 1.0
36 NZ= 13.5'	15 20 30	2 4 15	1 5	- 1	7.1 9.6 15.2	0.3 0.6 1.7
39 NZ= 11.8'	12 20 25	1 2 11	1 5	- - 1	6.0 10.5 13.6	0.1 0.4 1.0
42 NZ= 10.6'	10 15 20	4 5	1 4	- 1	5.3 8.3 11.6	0.1 0.5 0.8

Passfahrten und Fliegen ohne Druckkabine Le passage d'un col et vol sans cabine pressurisée (Zwischenwerte der Höhe aufrunden/prendre pour les valeurs intermédiaires d'altitude ce RG am ENDE des Tauchganges Anmerkungen: Kein zusätzlicher Aufstieg innerhalb der

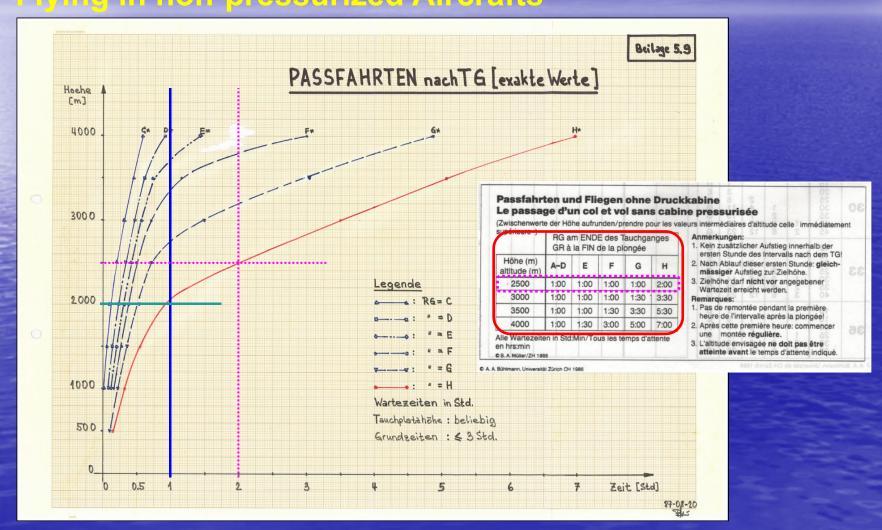
	GRà	la FIN	de la pl	ongée	
Höhe (m) altitude (m)	A-D	E	F	G	Н
2500	1:00	1:00	1:00	1:00	2:00
3000	1:00	1:00	1:00	1:30	3:30
3500	1:00	1:00	1:30	3:30	5:30
4000	1:00	1:30	3:00	5:00	7:00

Alle Wartezeiten in Std:Min/Tous les temps d'attente en hrs:min

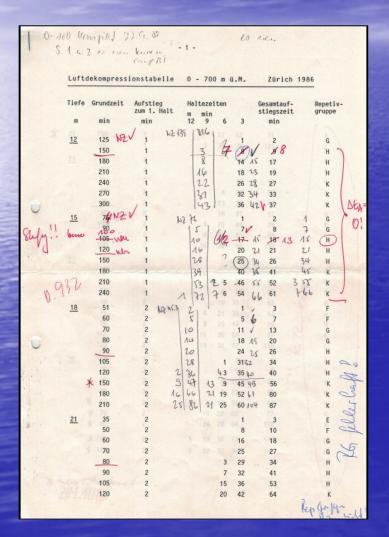
CB. A. Müller/ZH 1988

- ersten Stunde des Intervalls nach dem TG! 2. Nach Ablauf dieser ersten Stunde: gleichmässiger Aufstieg zur Zielhöhe.
- 3. Zielhöhe darf nicht vor angegebener Wartezeit erreicht werden.

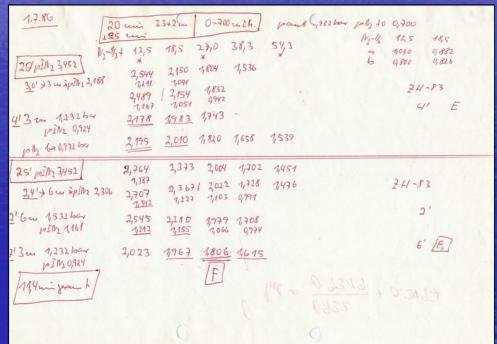
- 1. Pas de remontée pendant la première heure de l'intervalle après la plongée!
- 2. Après cette première heure: commencer une montée régulière.
- 3. L'altitude envisagée ne doit pas être atteinte avant le temps d'attente indiqué


C A. A. Bühlmann, Universität Zürich CH 1986

It was shown that especially longer dives at shallow depths led to longer desaturation times and waiting times for flying.


Obvious reason: for these profiles, the leading compartments are those with longer halftimes which

- a) have lower inert gas tissue limits and
- b) require more time to desaturate.


The `86 Air Diving Tables: Crossing a Pass and Flying in non-pressurized Aircrafts

The `86 Air Diving Tables: Number crunching behind...

Professor Bühlmann as a numerical wizard.....

repeated iterations of corrections and refinements.....

The `86 Air Diving Tables: Decision for Introduction

anent lie 9

Fédération Suisse de Sports Subaquatiques Schweizer Unterwasser-Sport-Verband Federazione Svizzera di Sports Subacquei

AN DIE MITGLIEDER DES ZV

Copia

Membre fondateur de la Confédération Mondiale des Activités Subaquotiques (CMAS Membre de l'Association Suisse du Sport IASS/SISI Membre de l'Interassociation du Sauvetage (IAS/IVRI et de la Société Suisse de Souvetage

AI MEMBRI DEL

COMITATO DIRETTIVO

Ing. Nicolao AMBROSINI CAPO-ISTRUTTORE FSSS-SUSV Via Migiome 61 6616 LOSONE

AUX

AUX MEMBRES DU BD

23 luglio 1986 11 agosto 1986

INCARICO DEL BD DEL 21 6 86 ALLA COMM. AD HOC: INTRODUZIONE NUOVE TABELLE.

La commissione, preso

zione esistente ed

atto della documenta-

AUFTRAG DES ZV VOM 21 1986 AN DIE AD HOC KOM EINFÜHRUNG DER NEUEN TABELLEN .

Die Kommission hat, nach

Kenntnisnahme der be -

und den nötigen Ueber-

stimmig beschlossen :

prüfungen, folgendes ein-

1.- Der Zentralvorstand

des SUSV wird ersucht.

die neuen Bühlmann Ta-

bellen 83/SUSV in den

stehenden Unterlagen

Demande du BD du 21 o6 1986 à la commission ad hoc pour l'introduction des nouvelles tables.

esperiti i necessari accertamenti, ha deciso all'unanimita quanto segue: 1.-Il Comitato Centrale FSSS é invitato a voler decidere l'introduzione presso la Federazione delle nuove tabelle Bühlmann 83/FSSS.

Verband einzuführen.

Federazione delle nuove tabelle Bühlmann
83/FSSS .

2.- Ne viene parimenKraft zu setzen.

La commission a décidé à l'unanimité, après avoir pris connaissance de la documentation existante et fait les vérifications nécessaires, de :

1. inviter le BD d'accepter les tables Bühlmann 83/FSSS,

2. de les faire entrer en vigueur dans toute la Fédération à partir du ler janvier 1987.

ti proposta l'entrata in vigore per l'1 1 87.

Ambrosini

Badoux Maurice Bianda Patrizi

Galfetti Americo Müller Beat Sucessful Termination

The `86 Air Diving Tables: Final report to the Instructor in Chief

Dietikon.den 12.10.87

Beat Mueller Muehlehaldenstr.3 8953 Dietikon

Hrn.Nicolao Ambrosini Chefinstruktor SUSV Via Migiome 61 6616 Losone

Betrifft: Passfahrtentabelle, Hoehenveraenderungen nach Tauchgaengen

lieber Nico.

ich habe zwischenzeitlich meinen Bericht mit Prof.Buehlmann durchgesehen und wertemaessig ueberprueft. Auf seinen Wunsch hin habe ich fuer ein zusaetzliches, spezielles Tauchgangprofil (21m/80°) die verlangten Wartezeiten fuer alle Hoehen sowohl mit dem BASIC-Programm, wie auch auf dem HP-97 durchgerechnet. Die Werte der beiden Programme stimmen einmal gegenseitig , aber auch mit den durch Handrechnungen von Prof. Buehlmann ermittelten Werten voellig ueberein.

Im weiteren Verlauf der Diskussion ging Prof.Buehlmann noch einmal auf das Phaenomen der verzoegerten Gaselimination im Bereich der Haut und Muskulatur waehrend des Oberflaechenintervalles ein.

Um dieses Problem auch noch in den Griff zu bekommen, macht Prof.Buehlmann folgenden Vorschlag:

- als minimale Wartezeit an der Oberflaeche sollte ein Intervall von 1 Stunde nicht unterschritten werden.
- die Rundung der exakten Werte sollte auf HALBE Stunden erfolgen (meine Variante "B").

Damit ergibt sich folgendes Tabellenbild:

zul.	+				4			Rep.0	ir	uppen	4					
Hoehe [m]	1	А	1	В	1	С	1	D	-	E	1	F	1	6	1	Н
500	+	1:00	1	1:00	1	1:00	-	1:00	+	1:00	1	1:00	1	1:00	1	1:00
1500	-	1:00	1	1:00	1	1:00	-	1:00	1	1:00	1	1:00	1	1:00	1	1:00
2000	1	1:00	1	1:00	1	1:00	-	1:00	1	1:00	1	1:00	1	1:00	1	1:00
2500	1	1:00	1	1:00	1	1:00	1	1:00	1	1:00	1	1:00	1	1:00	1	2:00
3000	1	1:00	1	1:00	1	1:00	-	1:00	1	1:00	1	1:00	1	1:30	1	3:30
3500	1	1:00	1	1:00	1	1:00	1	1:00	1	1:00	1	1:30	1	3:30	1	5:30
4000	1	1:00	1	1:00	1	1:00	1	1:00	1	1:30	1	3:00	1	5:00	1	7:00

-

Dies kann noch stark vereinfacht werden (mit der Anmerkung!):

+	+	Rep. Gr	uppen	
Hoehe [m]			1 6	1 н
2500	1:00			
3000	1:00	1:00	1 1:30	3:30
3500	1:00	1:30	1 3:30	1 5:30
4000	1:30	3:00	1 5:00	1 7:00

Anmerkung: im Verlauf der ersten Stunde nach einem TG kann in den RG "A" bis "D" stetig bis 4000m, in den uebrigen RG's bis 2000m aufgestiegen werden!

erne

Die Sicherheit der vorliegenden Tabelle fuer Hoehenveraenderungen nach Tauchgaengen basiert auf folgenden Punkten:

- experimentell durch Kammerversuche und Freiwassertauchgaenge breit abgestuetzte Koeffizienten des Systems ZHL-12
- das dem vorangegangen TG zugrundegelegte Rechteckprofil (ergibt hoeheren Inertgasdruck im Kompartiment)
- 3. der diesem TG zugrundegelegte Tiefenzuschlag
- die Annahme der Ausgangshoehe (Tauchplatz) mit 0 m , d.h. Meereshoehe
- 5. die Annahme eines zeitlosen Aufstiegs auf die Zielhoehe
- 6. die Bestimmung der maximalen Wartezeit an der moeglichst exakt ermittelten Grenze von einer RG zur naechsten
- 7. die ausschliessliche Beruecksichtigung des Maximalwertes aller TG innerhalb einer Rep.Gruppe
- 8. die Vorschrift einer minimalen Wartezeit von 1 Stunde
- 9. die Aufrundung der exakten Werte auf die naechste halbe Stunde

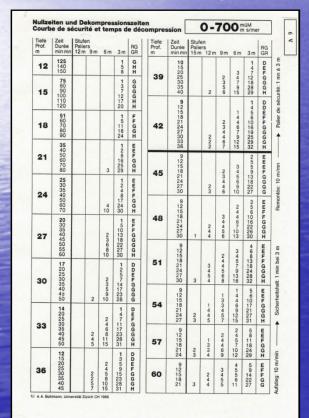
Damit ich rechtzeitig die entsprechende rublikation mit crkiaerungen und ev. Beispielen fuer den NEREUS vorbereiten kann, darf ich Dich bitten, mir moeglichst RASCH (spaetestens bis 21.10.87) eine verbindliche Stellungsnahme zukommen zu lassen.

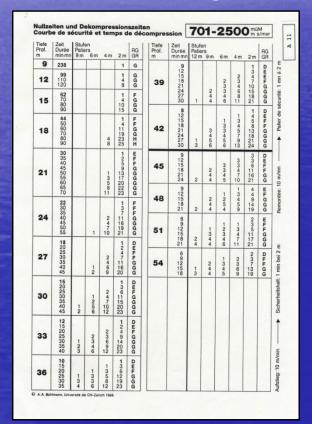
Falls gewuenscht, bin ich auch bereit, anlaesslich der TK-Sitzung am 19.10.87 in Zuerich und/oder am Zentralkurs eine Praesentation zu diesem Thema zu geben.

Auf Grund der umfangreichen Dokumentation die Euch (TK.IA) vorliegt, sowie des Vertrauens, das wir alle in die Arbeit von Prof.Buehlmann setzen. sollte die Meinungsbildung eigentlich eine kurze Sache sein.

In Erwartung Deiner Antwort verbleibe ich

mit kollegialen Gruessen

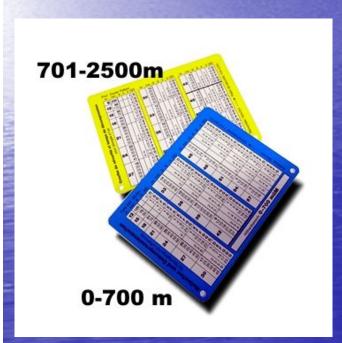

The `86 Air Diving Tables: Presentation to the Public


The final "product": the air diving tables of `86 (1)

- 2 forms for usage:
 - paper print
 - plastified version
- 2 sets of diving tables for different altitude ranges
 - 0 700m a.s.l. (complete adaption at sea level, immediate dive at 700m)
 - 701 2500m a.s.l. (complete adaption at 700m, drive to 2500m in 1 hr, immediate dive)
- ◆ 1 Surface Intervall Table (SIT) for 0-2500m a.s.l. including
 - Time for almost complete desaturation for each RG at end of dive
 - Waiting Time for Flying after diving in pressurized aircrafts
- ◆ 1 Residual Nitrogen Table (RNT) for 0-2500m a.s.l.
- 1 Table for Waiting Times for Flying after diving in non-pressurized aircrafts and for crossing a pass (up to 4000m a.s.l.)
- Handling rules for all tables

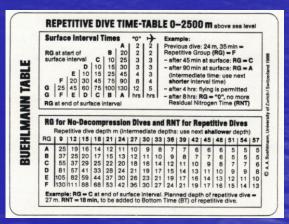
The '86 Air Diving Tables: Printed version of tables

The final "product": the air diving tables of `86 (2)



Printed paper version; it is agreed that diving beyond 40m (absolute) is regarded in most jurisdictions as an voluntary risk, which may have legal consequences.

The `86 Air Diving Tables: Plastified version of tables


The final "product": the air diving tables of `86 (3)

Dep	1	min	6	ops 3	RG	m	min	9	6	3	RG	m	min	12	9	6	3	R					
1	2	125		1	G		14			1	D		12				5	E					
1	5	75 90		7	G	33	20 25 30 35 40		2	7	DEFG	45	15 18 21 24		2	3 4 5 6	5 9 13 18	EFOO					
1	B	51 70		11	F		35	2	6 8	17	GG				4	6							
2	1	35 50 60		1 8 16	E F G	36	12 20 25 30 35		2 4	1 5 9 15 23	DEF	48	9 12 15 18 21		3	2 4 4 6	3 5 6 10	EEFFG					
		25		1 4	E		30	2 2	5 8	15	G	-		H	4	6	16	-					
2	25 35 40 50 60	4	8 17 24	FGG	39	10 15 20 25 30 35	2	3 4 7	1 4 7	DEFC	51	9 12 15 18 21	3	2 4	3 4 5 7	6 8 13 18	BEFF						
60	20 30		5	EFF		30	3 5	7 9	12 18 28	999			Ť	Ť.	1	$\overline{}$	_						
2	27 35 40 45 50	30 35 40 45	35 40 45	35 40 45	35 40 45	35 40 45	35 40 45	2	5 10 13 18	LGGG	Г	9			1	D	54	9 12 15 18	1	3 3	4 4 6	5 6 10 17	BEFG
30	0	17 25 30 35 40	2 3	1 5 7	DEFG	42	15 18 21 24 27	2 3 4	1 4 4 6 7	5 6 10 16 19	DEFFGG	57	9 12 15 18	1 3	2 4 4	2 4 5 7	5 8 11 18	EEFG					
	30 30 2 35 3 40 5 45 9	0 35 40 45	17	GG	$\overline{}$		Altit	ude	0-	70	0 m	ahove	SA	le	/el		=						

m	min	6	4		RG	m	min	9	6	4	2	RG	m	min	9	6	4	2
9	238	L		1	G		15				1	DEF		12				1
12	110			1 4	G	30	25 30		1	2 4	3 6 11	F	42	15 18		1	3	5 0
15	62 70			1 4	F		35 40	1	2 5	7	15	900		21 24	3	3 3 4	5 7	5 8 13 18
18	44 50 60			1 4 11	FFG	33	12 15 20			2	1 2 4 9 14 20	DEFGG	45	9 12 15		3	3 3	3 6 11
	30 35			1 2	E	-	25 30 35	1 2	3 4	2369	14	999		18 21	2 4	3 4	4 7	11
21	40 45			5 9	F		10	-	-		-			9		,	1 3	4 4 9
	50 55		3	13 17	G	36	15 20		1	1358	1 3 6 12 19	DEF	48	9 12 15 18	2 4	1 2 5	3 4 5	9
	22			1 3 7	F		20 25 30	3	3	8	19	G		6				_
24	30 35 40 45		2	7 11 16	FGG		9 12 15			,	1 3 4	DEEF	51	9 12 15	1 3	1 2 3	3 4	2 3 5 11
		H	-	1 2	-	39	18		233	23468	7	F	54	6 9 12 15		1	3	2 3 7 13
27	18 20 25 30		2	4 7	DEFF		24	24	3	6	10 15 18	000	34	12 15	2	3	3 3 6	13
	35 40	1	6	11	G	F	Alt	itud	le 7	701	-	250	00 m	abov	/e s	ea	leve	1

2	urfac	e In	ter	rel T	ime		"0"		_	Exar	mole						
-						-		1 2		Prev			- 24	m 35	min	_	
R	Gats	tart o	1		B	20	2	1 2		Rep	etitiv	e Gr	oup	(RG)	=F		
	rface			C	1 10			1 3		- aft						G =	C
			D	10	15	30	3			- aft	er 90	min	ats	urfac	e R	G =	A
		E	10	15				3		(in	term	edia	te tir	ne: u	se n	ext	
	F 20 30 45 75 90 8 4 shorter interval time)																
G 25 45 60 75 100 130 12 5 - after 4 hrs: flying is permitted																	
G F E D C B A hrs hrs - after 8 hrs: RG = "0", no more																	
RG at end of surface interval Residual Nitrogen Time (RNT)																	
	G for	No-	Dec	om	pres	slo			and	Re	sidu T fo	al Ni	pet	itive	ne (l	ves	_
	G for		Dec	om	pres	slo		ediat	and te de	Re	T fo	r Re	epet	itive	Direr d	ves epth	,
R	G for	No- etitive	Dec div	om _j	pres	slo	term	ediat	and te de	Re	T fo	r Re	epet	itive	Direct di	epth	57
R	G for Rep 9 25	No- etitive 12 19 25	Dec e div 15	e de 18	pres pth r 21 12 15	sio n (in	term 27	30 9	and te de	Repths	T fo	r Re	pet t sh	itive sllow	51 5	epth	57
R	G for Rep	No- etitive 12 19 25	Dec e div 15	om e de 18	pres pth r 21 12 15	sio n (in:	27 10 12	30 9 11	and e de 33	Repths 36	T fo	r Report	pet t sh	itive	Diverdi	ves epth	57
RGABC	G for Rep 9 25	No- etitive 12 19 25	Dec e div 15	e de 18	pres pth r 21 12 15	11 13	10 12 18	30 9 11	and 10 de de 33 8	Repths	T fo: use: 39	r Renex 42 6 7	epet t she 45	itive	51 5	epth	57
RGABCDE	25 37 55 81	No- etitive 12 19 25 37	Dec e div 15 16 20 29 41 59	e de 18 14 17 25 33 44	pth r 21 12 15 22 28 37	11 13 20	10 12 18 21 26	9 11 16	and e de 33 8 10	Repths 36 7 9 12	T fo: use: 39	r Re nex 42 6 7 10	epet t she 45 6 7 9	itive	Diver d	7 5 5 7	57
RGABC	G for Rep 9 25 37 55 81	No- etitive 12 19 25 37 57	Dec e div 15 16 20 29 41	e de 18 14 17 25 33	pth r 21 12 15 22 28	11 13 20 24	10 12 18 21	9 11 16 19	8 10 14 17	7 9 12 15	T fo: use 39 7 8 11 14	r Re nex 42 6 7 10 13	# # # # # # # # # # # # # # # # # # #	itive allow 48 6 6 8	51 5 7 9	54 5 5 7 9	57

Set of plastified carry-on uw tables (in German, French, English) for both altitude ranges. Slightly reduced number of depth-bottom time combinations compared to printed paper version.

Bühlmann Memorial Symposium 2019 **Tools and Technical** Support behind

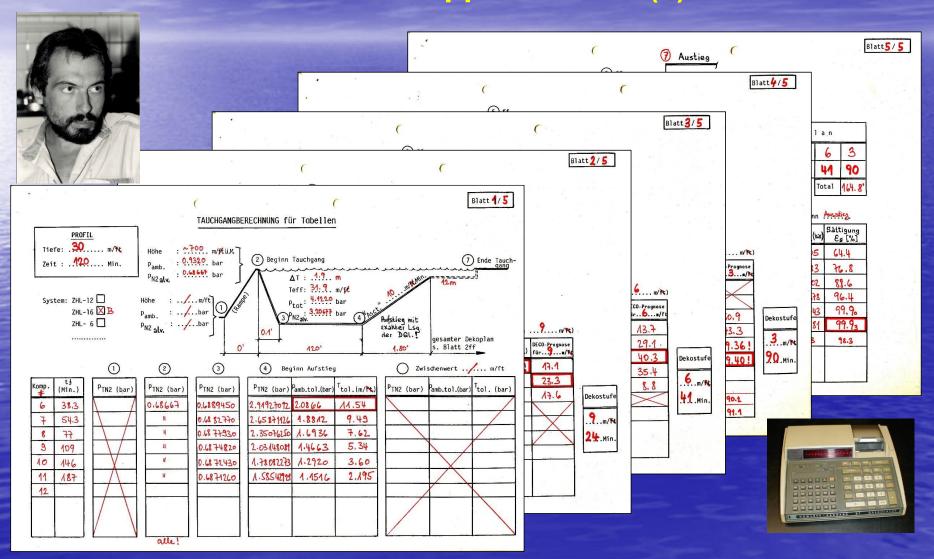
Tools and Technical Support behind (1)

parallel...

(IBM 3033 and 3081;

Fortran Program)

First try... (HP97; 224 programmable steps; reverse Polish notation)



2nd try: Compaq portable III; Turbo Basic

16-11 -63 62 16-31 #LBLB 626 823 DSFI -41 16-31 -63 63

Tools and Technical Support behind (2)

Tools and Technical Support behind (3)

Programmer : B. Mueller

: CAP SEMIMI (SUISSE) AS SOFTWARE DEPARTEMENT


```
Eingabe (#1): KOEFF.TB6
Eingabe (#2): DTABMUTT.INP
 Ausgabe (#3): t0825r15.Wh3
           : 89-08-2B
 a.Hoehenlage (Hoehe 1) a u.M. = 2500 a
2a.Oberfl.-Luftdruck Hoehe 1 = 0.741 bar
 3a.alv. N2-Druck (Oberfl.Hoehe 1)= 0.537 bar
 4a.alv. HE-Druck (Oberfl. Hoehe 1) = 0.000 bar
1b. Hoehenlage (Hoehe 0) m u.M. = 800 m
2b.Oberfl.-Luftdruck Hoehe 0 = 0.917 bar
3b.aiv. N2-Druck (Oberf1.Hoshe 0) = 0.675 bar
4b.alv, WE-Druck (Oberfl.Hoehe 0)= 0.000 bar
                                                Note: a
5. Anfahrtszeit Hozheû->Hoehei = 15 min
b. Aufenthaltsdaper auf Hoehel = 180 min
                                                long as
7a.konst. N2-Anteil Oberflasche = 79.0 %
7b.konst. HE-Anteil Oberflaeche = 0.0 %
                                                don't k
8a.konst. N2-Anteil waehrend T6 = 79.0 %
8b.konst. HE-Anteil waehrend T5 = 0.0 %
9. konst. Wasserdampfdruck
                               = 0.062 bar
                                                all this
10. konst. CO2-Partialdruck
                               = 0.053 bar

    Respirationskoeffizient

                               = 1.000
                                                govern
12a.Drucksteigerungsfaktor
                               = 0.961 bar/10
12b.entsprech. Wasserdichte
                               = 0.980 kg/liter
                                                parame
13. konst. TIEFEN-Zuschlag
                               = 0.00 a
14. multipl. TIEFEN-Zuschlag
                               = 0.00 I
                                                any
15. zus.Dekostufen-Sicherheit
                               = 0.00 m
ló, konst, Tiefenzuschl, DEKO
                               = 0.00 m
                                                discus
17. multipl.Tiefenzuschl.DEKD
                               = 0.00 X
18. Abtauchzeit a. Tiefe (fix)
                              = 3.0 min
                                                on a ta
19. Auftauchgeschwindigkeit
                               = 10.0 m/min

    Spezif.Luftverbr.(Bberfl.)

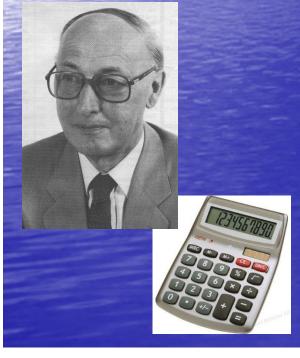
                              = 20.0 L/min./ a
                                                useles
22a.Kabinendruck f. Wartezeit
                               = 0.696 bar
22b.Flughpehe n. Kabinendruck
                               = 3000 e
23a.Kabinen-M2-Partialdruck
                               = 0.501 bar
23h.Kabinen-HE-Partialdruck
                               = 0.000 bar
23c.leitloser Aufstieg bis Flughoehe (TAFL6=0.0 ain)
24. Entsaettigung bis PIGSAF1 🕏 1.050
25. Grundzeit = Abtauchzeit + Zeit auf Tiefe
26. Aufstieg IMISCHEM Dekostufen NICHT berwecksichtigt.
27. alle Dekozeiten auf GAMIE Minuten aufgerunde.
   Halbwertszeiten, Koeffizienten, tol. Oberfl Komp.-druecke, K'-In
```

KOMMENTARE: mutisme 8	00/15/2500/180/t86									
	; ; ;	NULL ZETTE Hdehenb	######################################	SSIONSTABELLI T 2500 m u.M.	E # # # # # # # # # # # # # # # # # # #					
Y I DEKOMPRESSION I E E I Tiefen in me F T Zeiten in mi	IN E U EI ter IFI FRI nuten ITT I B:	BIS FLUG 1	UM6SZEIT : ! ! Zeit/No pt[6]	JEDER 1. No: 2. No:	EIWZELNEN DEI		:		ZUSTAENDE UFTAUCHEN No/pt16/	•
# min 21 18 15 12 9	6 4 21min #3 1 9	td # bar i	Std # bar i	21 18		9 6 4		• bar	# bar	
	min (inkl. Abstiegs									
121			25.3/16 0.677					3/1.557	4/1.317/	i 74
151			26.0/16 0.684					3/1.722		
RST-22			26.7/16 0.691					3/1.862	4/1.594/	70
as	1: 4 2.14:0.	01/ 3 1.9251	27.4/16 0.698				3/3 [3/1.925	4/1.6B1/	94
s you	21 5 2.4610.	01/ 3 1.9491	28.0/16 0.705				3/3	3/1.949	4/1.742/	98
	41 7 2.8010.	01/ 4 1.7471	28.7/16 0.712				3/4	4/1.747	5/1.546/	97
now	1 51 9 3.1510.	03/ 5 1.581	29.2/16 0.719			3/3	3/5 ;	5/1,581	6/1.396/	97
	min (inkl. Abstiegs	zeit= 3.00 m	in) / Komparti	ment= 3,PTIS	[3] = 1.957 t	ar				
ina	1 3 1.3510.	00/ 1 2.213;	25.7/16 0.681				;	3/1.660	4/1.399/	79
ing	3 1.6610.	00/ 1 2.308	26.5/16 0.68B				1	3/1.839	4/1.558/	88
eters,	11 4 2.0110.	01/ 3 1.9341	27.2/16 0.696				3/3 ;	3/1.934	4/1.671/	94
,			27.9/16 0.704					3/1.913		
	1 41 8 2.7510.							4/1.747		
sion	2 31 10 3.1210.						3/5 1	5/1.586	6/1.399/	97
ble is	min (inkl. Abstiegs				1 3) = 1.957 1	ar				
			26,6/16 0.684					3/1.763		
s!	; 4 1.8010. 3; 7 2.2210.		26.9/16 0.693		1000			3/1.955 3/1.912		
21	2 31 9 2,62:0.	11 17				03/01		4/1.754		
#241	3 41 11 3.0110.				R	3/3		5/1.594		
921	2 7 71 17 7 5010				0	7/7 7/4	1/5	44 422	7/1 740/	20
		14/1		· · · · · · · · · · · · · · · · · · ·	Jani .					
			Eddo	77777	PEER					

Later program version in Turbo Basic on a carry-on Compac PC

Tools and Technical Support behind (4)

Kind support of Dr. Klaus Meier-Ewert, Germany, Physicist, Diving Instructor and Computer Expert
Cross-Checks done on IBM-mainframe


(†1989)

		C		→ • €2	7+1+5%	Tiefe	Grundzeit	
WOHNORT (BAR): .93 TAUCHGEB.(BAR): .75 AUFENTHALT (H): 999.00	0,9 52 K O H P R 0.277	ESSION	- DEKON	PRESSI	ONS-PR	OFIL SE	7/55 SEITE	
AUSGANGSTIEFE (M) N2-PARTIALDRUCK (BAR) ZIEL-TIEFE GELOTET (M) N2-PARTIALDRUCK (BAR) AUF/AB-GESCHW. (M/MIN) ZEIT FUER AUF/AB (MIN) VERMEILZEIT (MIN)	0.00 .69 1.85 .54	0.00 .69 1.85 .69 999.00	1.85	1.85 .69 0.00 *.54 03 60.00	0.00 .54 -28.81 2.82 288.10 .10	28.81 2.82	28.81 2.82 9.00 1.25 -10.00 1.98	
BELASTUNGSFAKTOR TEMPERATURFAKTOR LUFTVERBR.(L) 20 L/MIN SPEZ.DICHTE 1.02 GEWEBE-ART HS-ZEIT	heg, wird &	ABSTIEG GPN2 PTOL	39952 AUFENTHALT	40496 AUFSTIEG	3 ABSTIEG	Grundzu'L 3994 AUFENTHALT GPN2 PTOL	4066 AUFSTIEG	
GEHIRN- / 4.00 RUECKENMARK 2 8.00 3 12.5 4 18.5 5 27.0	.540 .000 .540 .000 .540 .000 .540 .000	.551 .000 .524 .000 .517 .000 .561 .000 .503 .000	.687 .000 .687 .000 .687 .000 .687 .000	.555 .000 .568 .000 .583 .000 .599 .000	.578 .000 .589 .000 .603 .000	2.817 .733	2.576 .541 2.674 .979 2.640 1.288 2.498 1.335	4
HAUT- 6 38.3 MUSKULATUR 7 54.3 7 77 9 109 INNENDHR 146 40 146	.540 .000 .540 .063 .540 .090 .540 .114 .540 .117	.426 .000 .687 .190 .687 .222 .687 .247 .687 .254	.687 .096 .687 .190 .687 .222 .687 .247 .687 .254	.630 .047 .643 .152 .653 .192 .662 .224 .668 .236	.632 .049 .644 .153 .654 .193 .663 .225 .668 .237	2.009 1.233 1.740 1.107 1.499 .955 1.299 .802 1.162 .701	2.010 1.234	
GELENKE- 45 305 KNOCHEN 47 390 45 498 46 635	.540 .162 .540 .275 .540 .275 .540 .275 .540 .275	.687 .301 .687 .415 .687 .415 .687 .415	.687 .301 .687 .415 .687 .415 .687 .415	.675 .289 .677 .406 .679 .408 .681 .410 .682 .411	.675 .289 .678 .407 .679 .408 .681 .410	.991 .588 .929 .648 .878 .599 .838 .561 .807 .531	.997 .594 .934 .653 .882 .603 .842 .564 .809 .533	
DEKOZEITEN FUER 2M 4M (MIN) 6M 9M 12M 15M 18M 21M ME/24.10.86 24M 27M	Saltisungszust om f 2500 m 1 0.7476 or	76 and 1.85 m = 0.912-0.747	Sa'H. zustand bei 700 m	Rampe		24 13 7 1 Ende Grunden	24 14 7	
	.00—	.00	9999.00	— <i>60</i> .00—	D Zu'Lachse	55.10	57.08	

Tools and Technical Support behind (5)

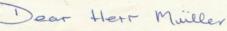
Another personal check in Prof. Bühlmann's own handwriting; as already mentioned he did all calculations with a small hand-held "calculator"

				\$ 14 M				
	21.686	15 ruin (5420	, 701-,	2500 end	S po	Seub 9747 bay 1	
	700 a phyto 0,700 N2	-1/2+ 12,5	18,5	27,0	38,3	543	(V2-1/4 12,5 a 1,030	18,5
	60' -> 2500 cm	0,593	0,614	0,634	0,651	0,667	b 0,800V	0,826
É	15' pIN2 4,727	2,929 1,519	2,384	1,942	1621	1373		
	2,0'731m SplM 3,850	3026	2,490	2,037	1,700 1716	7,435 1,454	74-83	
	2,21 + 9 m xp [Nz 2,121	7,922 1,514	2,462	2,042	1716	1,439	W	
Į	31 9 m 1,647 ban psr 1,251	2,666	2,338	1,984	1692 9961	1446 9851 V	2′.	Aus
	31 6 cm 1,347 bar pin 1,014	2,413V 1,106V	2,1931	1,913 V 7,011 V	1,65641 0,930 U	7,430 V 9837 V	3′	Charles of the control of the contro
	41 4 m 1,1476a DINI 0,856		2,0071 9929 V	1810 0	1601V1 9882	1,402 V 0,813 V	3′	a d
	11/2 in 0,947 bay	1,46101	5651	1,537	1,4380	310	16' G	A)
	Que ply les 9747/200	7,964	1,780	1,601	1,444	1,327		8
46	25,2 mingrent	,	,			[9]		
				2.	6		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Bühlmann Memorial Symposium 2019 Lake Titicaca Trials (1987)

Lake Titicaca Trials; Bolivia, 3800m a.s.l. (1)

REFERENCE


Herr Beat Mueller Divetronic A.G. Sit. Gallerstrasse 119 CH-8404 Winterhur Switzerland Capt (OEO) Marc Moody RACC

SCIENTIFIC STUDIES & EXPLORATION GROUP PERU 1987

Osnabruck Detachment ASU 1 Ord Bn Roemereschstrasse 4500 Osnabrück

Osnabruck Mil Ext 7295

7December 1986

EXPEDITION LAKE TITICACA

The plans for the expedition to Lake Titicaca are going well and I am sure that it will prove of great value to you especially as we will have such big coverage in TV and Newspapers. It appears that we will have two Television Teams, one from BBC and the other SSVC-TV as well as a full P.R. Team.

I have written to Professor Buehlmann to arrange a visit in February and I shall be arriving with my Medical Officer and Diving Officer and I thought it would be an ideal opportunity to pick up the Deco-Brains you so kindly offered us and also discuss the data you require from the expedition as well as publicity photographs, etc.

Originally we were planning a two week expedition to Gibraltar but this has now changed to Sardinia and the dates are 27 Feb - 13 March. The aim of this expedition is to work the divers together as a team, practice using the Deco-Brain, and obtain results at sea level for comparison at Lake Titicaca. Should you wish to join us you would be more than welcome.

I look forward in hearing from you in due course.

M MOODY
Capt RACC
Expedition Leader

BSAC Diving Officer's Conference, London, Nov. 1986

THE VALIDITY OF A MULTI-TISSUE MODEL IN SPORT DIVING DECOMPRESSION

A. A. Bühlmann-University Hospital of Zürich, Switzerland

"What is a multi-tissue model? It is generally accepted that the inert gas pressure gradient is the driving force in the equalisation of nitrogen partial pressures between the breathed air and that in the blood and tissues. The rate of this equalisation of pressure for the upstake and release of inert gas is exponential, and here is the first question—is it the same relation during descent-bottom time and accent-decompression? We say that it is the properties of the propertie

PIN, =(Pamb. -0.063) · 0.79

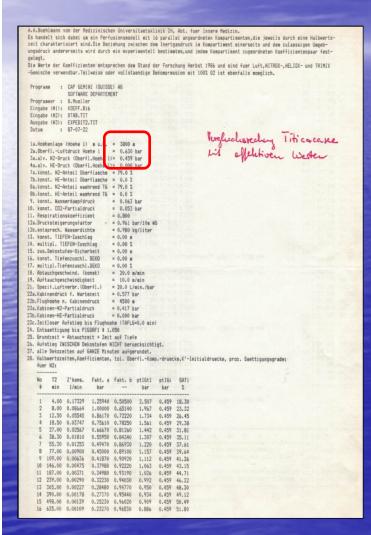
 $\begin{array}{ll} (PIN_2 \; incl. Argon) & 0.063 = \; PH_20 \; at \; 37^{\circ} \; C \\ PN_3 I. (tE) = PN_2 I. \; (t0) + \left[\; PIN_2 - PN_2 I. (t0)\; \right] \; \cdot \left[\; 1 - e^{-0.69315} \; \cdot \; tE/\% - t\; \right] \\ \end{array}$

PN₂L(tE) PN₂ in the tissue at the end of the exposure PN₃L(t0) PN₃ in the tissue at the beginning of the exposure PN. in inspiration

e is the base of natural logarithms, 2.71828
tE time of exposure
½-t half-value time in minutes

The nitrogen partial pressure in the inspired air is the total pressure minus the vapour pressure, multipled by 0.79 (the proportion of nitrogen and argon). Why the vapour pressure in the airways and the lung? In deep diving -300m - this is a constant value, related to the body temperature, of 0.2% and you can forget about it. During decompression, at a 3m stop,

The relation between the nitrogen pressure in the different tissues, represented by different half-value times, and the ambient pressure where no symptoms of insufficient decompression appear is linear.


Pamb. tol = $(PN_{\bullet}(-a) \times b)$

With this equation, it is possible to calculate the tolerated ambient pressure for every PN2 and half-value time of nitrogen (Figure 1). For 16 half-value times of nitrogen, we use 16 pairs of coefficients a and b.

Nitrogen is the normal inert base of our common breathing gas, air in the atmosphere. Other inert gases may be used, such as helium. The longest half-value time of helium is 240 minutes, and the tolerated partial pressures of helium are higher than the values for introgen. For diving with oxy-helium we have to use another spectrum of half-value times, and other values for occofficients and b, but we use the same principle of calculation.

Lake Titicaca Trials; Bolivia, 3800m a.s.l. (2)

1	T Z DEKOMPRESSIONSHAL	TE IA Z L VI WARTEZEIT							
T T Zeiten in sinuten T T B	E I ! Tiefen in meter	IU E U EI BIS FLUS	ENTSAETTIG- UNGSZEIT	KRITISCH JEDER EI	HE KOMPAR	TIMENTE	ZU BEGINN SSIONSSTUFE	1 KRIT.	ZUST
### ### ### ### ### ### ### ### ### ##	F ! Leiten in minutes			1.No: ti	iefste 'S	afe Asce	nt Depth'	-	
9 NULLEET								-1	
601	=====+==+==+==+==+==+==	+ 21811 80 7 500 4 581	+=======+===+====	10 10	12	+====+=	===+====+====	1 * Dar	
601	9 NULLZEIT= 457.3 min	(inkl. Abstiegszeit= 0.45	min) / Kompartiment	=10. PTI6[1	13 = 1.06	3 bar			
651								1 4/0 909	710
701	651	1 1 3.1110.00/ 1 1.092	111.4/15 0.5181						
731 1 3.5810.00/ 1 1.072115.716 0.5151 1.67.985 7.851 1.4.0510.00/ 1 1.072115.716 0.5561 1.67.985 7.851 1.4.0510.00/ 1 1.072115.716 0.5251 1.67.985 7.851 1.4.0510.00/ 1 1.072115.716 0.5251 1.67.982 7.901 1.4.0510.00/ 1 1.072115.716 0.5251 1.67.982 7.901 1.4.0510.00/ 1 1.072115.716 0.5251 1.67.982 7.901 1.4.0510.00/ 1 1.072115.716 0.5251 1.67.082 7.901 1.4.0510.00/ 1 1.072115.716 0.5251 1.67.082 7.901 1.4.0557 7.901 1.4.06.00/ 1 1.272115.2716 0.5571 1.67.082 7.901 1.4.06.00/ 1 1.272115.2716 0.5251 1.67.082 7.901 1.4.06.00/ 1 1.272115.3716 0.5351 1.67.082 7.901 1.4.06.00/ 1 1.272115.4716 0.5351 1.67.082 7.901 1.4.06.00/ 1 1.272115.4716 0.5351 1.4.06.00/ 1 1.2716.007 1 1.272115.3716 0.5401 1.67.082 7.901 1.4.06.00/ 1 1.272115.3716 0.5401 1.67.082 7.901 1.4.06.000 1 1.272115.3716 0.5401 1.67.082 7.901 1.4.06.000 1 1.272115.3716 0.5401 1.67.082 7.901 1.4.06.000 1 1.272115.3716 0.5401 1.67.082 7.901 1.4.06.000 1 1.4.06.000 1 1.072115.3716 0.5401 1.67.082 7.901 1.4.06.000 1 1.4.06.000	701	1 1 3.3510.00/ 1 1.092	112.2/15 0.5221					1 6/0.947	7/0
851 1 4.0610.007 1.092114.7016 0.5591 1.470.902 7 901 1 1 4.3010.007 1.092115.7716 0.5521 1.470.902 7 902 1 1 4.3010.007 1.092115.7716 0.5521 1.470.902 7 903 1 1 3.4310.007 1.292115.7716 0.5521 1.470.902 7 904 1 1 3.4310.007 1.292115.4716 0.5211 1.470.902 7 905 1 1 3.7210.007 1.292115.4716 0.5211 1.470.902 7 906 1 1 4.0010.007 1.292115.4716 0.5531 1.471.902 7 907 1 1 4.7510.007 1.292115.7716 0.5531 1.471.902 7 908 1 1 4.7510.007 1.292115.7716 0.5531 1.471.902 7 909 1 1 5.1310.007 1.292115.7716 0.5401 1.471.902 7 900 1 1 5.1310.007 1.29210.1716 0.5541 1.471.902 7 901 1 5.1310.007 1.29210.1716 0.5541 1.471.902 7 902 1 1 5.3310.007 1.48510.0711.0519 1.471.902 7 903 1 2 2.0010.007 1.48510.0711.0519 1.471.902 7 904 1 2 2.0010.007 1.48510.0711.0519 1.471.902 7 905 1 2 3.310.007 1.48510.0711.0519 1.471.902 7 907 1 1 2.48510.007 1.48510.0711.0519 1.471.902 7 908 1 2 3.310.007 1.48510.0711.0519 1.471.902 7 909 1 2 3.471.007 1.482115.7716 0.5511 1.471.902 7 900 1 2 3.471.007 1.482115.7716 0.5501 1.471.902 7 901 1 2 4.471.007 1.482115.7716 0.5501 1.471.902 7 902 1 2 3.471.007 1.482115.7716 0.5501 1.471.902 7 903 1 2 3.471.007 1.482115.7716 0.5501 1.471.902 7 904 1 2 3.471.007 1.482115.7716 0.5501 1.471.902 7 905 1 2 3.471.007 1.482115.7716 0.5501 1.471.902 7 907 1 2 4.471.007 1.482115.7716 0.5501 1.471.902 7 908 2 4 4.571.007 1.482115.7716 0.5501 1.471.902 7 909 1 1 2 3.4810.007 1.482115.7716 0.5501 1.471.902 7 909 1 1 3.3810.007 1.482115.7716 0.5501 1.471.902 7 901 1 3 3.4810.007 1.482115.7716 0.5501 1.471.902 7 901 1 3 3.4810.007 1.482116.007 0.5501 1.471.902 7 901 1 3 3.4810.007 1.482116.007 0.5501 1.471.902 7 901 1 3 3.4810.007 1.482116.007 0.5501 1.471.902 7 901 1 3 3.4810.007 1.482116.007 0.5501 1.471.902 7 901 1 3 3.4810.007 1.482116.007 0.5501	751	1 1 3.5810.00/ 1 1.092	113.0/16 0.5131					1 6/0.963	7/0
901	801	1 1 3.8210.00/ 1 1.092	114.0/16 0.5161						
12 NULLEIT= 146.5 min (inkl. Rbstiegszeit= 0.60 min) / Kompartiment= 7, PTIS(1) = 1.220 bar 601	821	1 4.0610.00/ 1 1.092	114.9/16 0.5191						
601								1 0/1,004	110
551 1 3.7210.00 1.722115,116 0.5211 1.671.08 1.671.08 7.701 1.1 4.7010.00 1.722115,1516 0.5251 1.671.08 7.751 1.1 4.7010.00 1.722115,1716 0.5251 1.671.08 1.671.18 7.751 1.671.00 1.722115,1716 0.5251 1.671.18 7.751 1.671.00 1.722115,1716 0.5251 1.671.18 7.751 1.671.00 1.722115,1716 0.5251 1.671.18 7.751 1.671.00 1.722115,1716 0.5251 1.671.18 7.751 1.571.00 1.722115,1716 0.5251 1.671.18 7.751 1.571.00 1.751.00 1.671.18 7.751 1.571.00 1.671.18 7.751 1.571.00 1.671.18 7.751 1.571.00 1.671.18 7.751 1.571.00 1.671.18 7.751 1.571.00 1.671.18 7.751 1.571.00 1.671.18 7.751 1.571.00 1.671.18 7.751 1.571.00 1.671.18 7.751.00 1.671.00 7.751.00	12 NULLZEIT= 146.5 min	(inkl. Abstiegszeit= 0.60	min) / Kompartiment	7, PTIGE	1] = 1.220	0 bar			
761		1 1 3.4310.00/ 1 1.282	114.2/16 0.5171					1 6/1.058	7/0
731									
801	701	1 1 4.0010.00/ 1 1.282	116.5/16 0.5261						
851	731	1 4.2810.00/ 1 1.282	117.5/16 0.5311						
901 1 1 5.1310.00/ 1 1.282120.1/16 0.5441	851	1 1 4.8510.00/ 1 1.282	119.7/16 0.5551						
301	901								
1	15 NULLZEIT= 77.2 min	(inkl. Abstiegszeit= 0.75	min) / Kompartiment:	6, PTI6[1] = 1.307	7 bar			
1	301	1 2 2.0210.00/ 1 1.457	1 9.0/14 0.5191					1 4/1 212	5/1
45:									
501									
351 1 2 3.6710.007 1.462716.3716 0.7281 1.471.477 1.5715 1.5715 1.5715.379 1.5715.	451	1 2 3.0110.00/ 1 1.462	113.4/16 0.5141						
601 1 2 3.9910.001 11.462118.016 0.5311 1.511.339 6.5511 1.511.339 6.551 1.2 4.7210.001 11.462118.016 0.5371 1.511.238 7.7 701 1 2 4.5310.031 6.1.288119.016 0.5371 1.511.238 7.7 701 1 2 4.5310.031 6.1.288119.016 0.5391 1.511.239 7.7 701 1 2 4.5310.061 6.1.289121.8716 0.5491 1.511.299 7.7 801 2 4 5.3610.061 6.1.299121.8716 0.5591 1.511.299 7.7 801 4 6 5.7410.061 6.1.299121.8716 0.5591 1.512.299 7.7 801 4 6 5.7410.061 6.1.299121.8716 0.5591 1.512.299 7.7 801 51 7 6.1010.061 6.1.299121.8716 0.5591 1.5212.299 7.7 801 1 2 2.3110.001 1.627110.8715 0.5591 1.551 1.5	201	1 2 3.3410.00/ 1 1.462	114.9/16 0.5201						
551	60!	1 2 3.6/10.00/ 1 1.462	117 4/14 0.5711						
761 1 2 4.6510.037 6 1.286119.716 0.5431 1 6.1.286 7 751 1 2 4.9610.06 1 21.285210.9716 0.5431 1 6.1.285 7 751 1 2 4.9610.06 6 1.255210.9716 0.5491 1 6.1.295 7 1 6.0501 2 1 4 5.340.06 6 1.298121.816 0.5551 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	A51	1 2 4.3210.00/ 1 1.462	118.8/16.0.5371						
751 1 2 4.7810.06/ 6 1.785120.4716 0.5391 1.611.295 7	701	1 2 4.6510.03/ 6 1.268	119.9/16 0.5431						
901 21 4 5.3610.06/6 1.299121.0716 0.3553	751	1 2 4.9810.06/ 6 1.295	120.9/16 0.5491						
901 51 7 6.1010.06/6 1.301125.6/16 0.5561 6/6 1.501 7/ 18 4 NULLIEIT= 47.5 min (inkl. Abstiegszeit= 0.90 min) / Kompartiment= 4, PTIS(1) = 1.561 bar 1 2 2.3110.00/1 1.627110.8/15 0.5151 1.361 bar 351 1 2 2.6810.00/1 1.63112.6/15 0.5241 1.4/1.431 5/ 401 1 2 3.0610.00/1 1.63112.6/16 0.5181 1.4/1.431 5/ 401 2 3.4310.02/4 1.350116.1/16 0.5251 1.4/1.430 5/ 501 11 3 3.8510.02/4 1.350116.1/16 0.5251 4/4 1.4/1.535 551 2.4 4.2310.05/6 1.289119.1/16 0.5391 4/4 1.4/1.535 551 4/4 1.2/1.05/16 0.5391 4/4 1.4/1.535	801	21 4 5.3610.06/ 6 1.298	121.8/16 0.5551				6/6	1 6/1.298	7/1
18 WHILIEIT= 47.5 min (inkl. Abstingszeit= 0.90 min) / Kompartiment= 4, PTI5[1] = 1.581 bar 307									
1 2 2.3110.00/ 1 1.627110.8/15 0.5151 1 3/1.519 4/1 1 3/1.519 4/1 1 3/1.519 4/1 1 3/1.519 4/1 1 3/1.519 4/1 1 3/1.519 4/1 1 3/1.519 4/1 1 3/1.519 1 1 2 2.4610.00/ 1 1.451112.6/15 0.5241 1 4/1.431 5/1 1 2 3.4510.02/ 1 1.532114.4/16 0.5181 1 4/1.490 5/1 1 2 3.4510.02/ 1 4.1530115.1/16 0.5251 1 4/1.530 5/1 1 3/1.530115.1/16 0.5251 1 4/1.530 5/1 1 3/1.530115.1/16 0.5251 1 4/1.530 5/1 3/1.530115.1/16 0.5351 1 4/1.53015.1/16 0.5351 1 4/1.53							6/6	1 6/1.301	7/1
351 1 2 2.4691.0007 1 1.451112.6115 0.5244 1 4/1.431 5/1.401 401 1 2 3.0410.007 1 1.452114.4716 0.5181 1 4/1.431 5/1.401 451 1 2 3.4510.027 4 1.350116.1716 0.5251 1 4/1.430 5/1.401 501 1 1 3 3.8510.027 4 1.353117.716 0.5251 4/8 1.41.533 5/1.501 551 2 1 4.2310.057 6 1.289119.1716 0.5351 4/8 1.41.533 5/1.434 6	18 NULLZEIT= 47.5 min	(inkl. Abstiegszeit= 0.90	min) / Kompartiment=	4, PTI6[1] = 1.561	bar			
351 1 2 2.4691.0007 1 1.451112.6115 0.5244 1 4/1.431 5/1.401 401 1 2 3.0410.007 1 1.452114.4716 0.5181 1 4/1.431 5/1.401 451 1 2 3.4510.027 4 1.350116.1716 0.5251 1 4/1.430 5/1.401 501 1 1 3 3.8510.027 4 1.353117.716 0.5251 4/8 1.41.533 5/1.501 551 2 1 4.2310.057 6 1.289119.1716 0.5351 4/8 1.41.533 5/1.434 6	307	1 2 2.3110.00/ 1 1.627	110,8/15 0,5151					1 3/1.519	4/1
401 1 2 3.0610.007 1 1.632114.4716 0.5181 1 4/1.490 5/ 451 1 2 3.4310.027 4 1.530116.1716 0.5251 1 4/1.540 5/ 501 11 3 3.8310.027 4 1.533117.7716 0.5521 4/4 1 4/1.533 5/ 551 21 4 4.2310.057 6 1.289119.1716 0.5591 4/4 15/1.434 6/	351								
501 11 3 3.8310.02/ 4 1.55317.7/16 0.5321 4/4 1.4/1.553 5/ 551 21 4 4.2310.05/ 6 1.28919.1/16 0.5391 4/4 1.5/1.434 6/	401	1 2 3.0610.00/ 1 1.632	114.4/16 0.5181					1 4/1.490	5/1
551 2: 4 4.23(0.05/ 6 1.289)19.1/16 0.539! 4/4 5/1.434 6/									
601 4: 6 4.66:0.07/ 6 1.304:20.4/16 0.546; 4/6 : 6/1.304 7/									

1 2 1.0910.00/ 1 1.6441 5.2/12 0.5151

First version of table; calculated for exact altitude (3800m); fully adapted; without safety margins for depth

1 2/1.425 3/1.213

Lake Titicaca Trials; Bolivia, 3800m a.s.l. (3)

No-decompression limits

JEBERS	ICHTSTAI	BELLE ZU	DEN NULLZ	EITEN / S	TATISTIK				
	SICHER:	TOTAL- :	ALVEOL.; N2-DRUCK;	ALVEOL.		EXAKT.	ABGER. II	OMP. I	ANZAHL PROFILE
[m] :	[m] !	[bar]	[bar]	[min]	[min]	[min]	[min]	[-]	[-]
9	0.00	1.495	1.142	0.000	0.45	457.3	457	10	7
12	0.00	1.784	1.370	0.000	0.60	146.5	146	7	7
15	0.00	2.072	1.598	0.000	0.75	77.2	77	6	13
18	0.00	2.361	1.826	0.000	0.90	47.5	47	4	7
21	0.00	2.649	2.054	0.000	1.05	33.3	33	4	18
24	0.00	2.937	2.282	0.000	1.20	24.2	24	3	18
27	0.00	3.226	2.509	0.000	1.35	19.3	19	3	13
30	0.00	3.514	2.737	0.000	1.50	15.3	15	2	14
33	0.00	3.803	2.965	0.000	1.65	12.7	12	2	14
36	0.00	4.091	3.193	0.000	1.80	10.9	10	2	14
39	0.00	4.380	3.421	0.000	1.95	9.6	9	2	9
42	0.00	4.668	3.649	0.000	2.10	8.5	8	2	10
45	0.00	4.956	3.876	0.000	2.25	7.6	7	2	10

First version of NDL-table; calculated for exact altitude (3800m); fully adapted; without safety margins for depth; v_Dsct=20m/min

Lake Titicaca Trials; Bolivia, 3800m a.s.l. (4)

16.1.87	Dekompressionstabellen 2501 - 4500 müM. ZH-L ₁₆ Version B Berechnungen von "Hand",
	ergänzt mit dem Computer, B. Müller. P. amb. 0.577 har. PIN. 0.406 har. PN. t. t0.0.416 har. (adaptiert)

Tiefe m	Zeit min	12	9	6	4	2	RG		Tiefe m	Zeit min	12	9	6	4	2	RO
9	204					1	G	Q.4	36	8					1	D
12	88 100					1	G			12				1	3	0
	100					5	G			15 18				3	4	I E
	110					9	G		-	18			1	4	6	1 5
	120					13	G		0.00	21			3	5	7	F
15	120 50					1	-		-	21 24		1	3	3 4 5 6 7	11	1 2
10	60						-			27		3	4	0	14	1 5
	60					2	-		39	27 7		3	4	,		1 6
	70					8	6		39					-	1	1 5
	80					14	G		-	12 15				2	4	1 5
	90					20	G			15			1	4	5	E
18	90 32 40					1	D			18		1	3 5	2 4 5 6	6	F
	40					3	F			21 24		2	3	6	10	F
	50					7	F			24		3	5	6	14	FGDEEFFG
	50 60				1	13	G		42	7					1	D
	70				1	1 1 5 9 13 1 2 8 14 20 1 3 7 13 17 1 3 6 7 10 13 15 15 15 15 15 15 15 15 15 15 15 15 15	@@@@@##@@@D##@@D##			9				1	3	E
21	22 30					1	D			12			1	3	4	ΙĒ
	30					3	E			15		1		4	6	I F
	35					6	F			18		2	3 4	5	9	I F
	40				1	7	F			21		4	4	5	13	I F
	45				3	10	F			24	1	2 4 5	5	8	16	l G
	35 40 45 50				1 3 4 6 8	13	G		45	15 18 21 24 6 9		-	-	•	1	16
	55				6	15	G			9		7/-		2	3	١ř
	60				8	18	G			12			2	3	5	15
24	16					1	FGGGDEF	-		15		2	2 3 4 5	3 4	3 5 7	Ι'n
	16 25					1 4	F			18		3 5	1	6	11	1 6
	30				1	6	F	14		21	1	5	5	7	11 15	16
	35				1 3 5 6 7	8	F		48	6	١.	5	5	,	1	16
- 1	40				5	12	F			6			1	2	4	15
	45			1	6	15	F			12		1		4	6	15
	50			1	7	19	G			15		2	2	-	9	15
27	50 14			3	,	1	0			10	1	3 4	3 5	5	14	15
	20					1	E		51		١,	4	5	0		10
	26				2	6	GDEEF	1	91	15 18 5 9			2	2	1	DEEFFGCEFFGCEFF
	20				5	7	=	100		12		2	2	2	5	1 5
	36			2	5	12	F			15		2	2 3 4	4	6	15
	25 30 35 40			2 4	2 5 5 6	6 8 12 15 18 1 4 6 7 12 15	G			15 18	1 2	2 3 5	5	6 7	11	IF
30	11			4	0	15	0		E4	18	2	5	5		16	GEFFG
30	11					1 3 5 7 11 15	D D		54	6			-	1	2 5	IE
	15 20				2	3	1			9		1	3 5	3 5 6	5	IF
	20				2	5	E F			12 15		3 4	3	5	7	IF
	25 30			1	4		1 -			15	2	4	5	6	13	G
	30			3 4	2 4 5 7	11	F									1
	35 9 12		1	4	7	15	G									1
33	9					1	D E F									1
	12					2	D									1
	15				1	4	E									1
	18 21				3	5	F									
	21			1	4	6	F									1
	24 27			3	3 4 5 6	1 2 4 5 6 7	F G									1
	27		1	3	6	11	G									1

Final table, calculated for up to 4500m (reason was also a probable evacuation flight with helicopter).

Parameters:

- ZHL-16B
- Fully adapted
- Upper altitude limit: 4500m a.s.l.
- Added safety margins for depth
- descent rate of 20m/min
- ascent rate of 10m/min

Lake Titicaca; Bolivia, 3800m a.s.l. (5)

Statement of the then British Ambassador in Bolivia at the arrival at La Paz airport:

"Gentlemen, whatever happens, stay British!"

To save the honor of Switzerland, it must be said that the Swiss Embassador also gave a farewell party to the expedition team.

Lake Titicaca; Bolivia, 3800m a.s.l. (6a)

EX PADDINGTON DIAMOND TEAM MEMBERS

Lake Titicaca; Bolivia, 3800m a.s.l. (6b)

Lake Titicaca; Bolivia, 3800m a.s.l. (7)

D7/4 Capt (OEO) M Moody RACC

Osnabruck Mil Ext 7295

Professor A ACBuhlmann Medical Clinic University Hospital Zurich CH 8091 Switzerland

We are now safely back from Bolivia and everything went extremely well.

I would like to visit you together with my Diving Officer Capt Malcolm Strickland 23/24 Juby if that is convenient.

We shall also be visiting UWATEC to discuss their Aladin during this period.

Our results comparing your tables with Aladin and Deco brain were very interesting and I shall be giving a ralk to the Diving Officers Conference in London in November and hopefully persuade them to adopt your table however we will talk further in Zurich.

On Her Majesty's Service

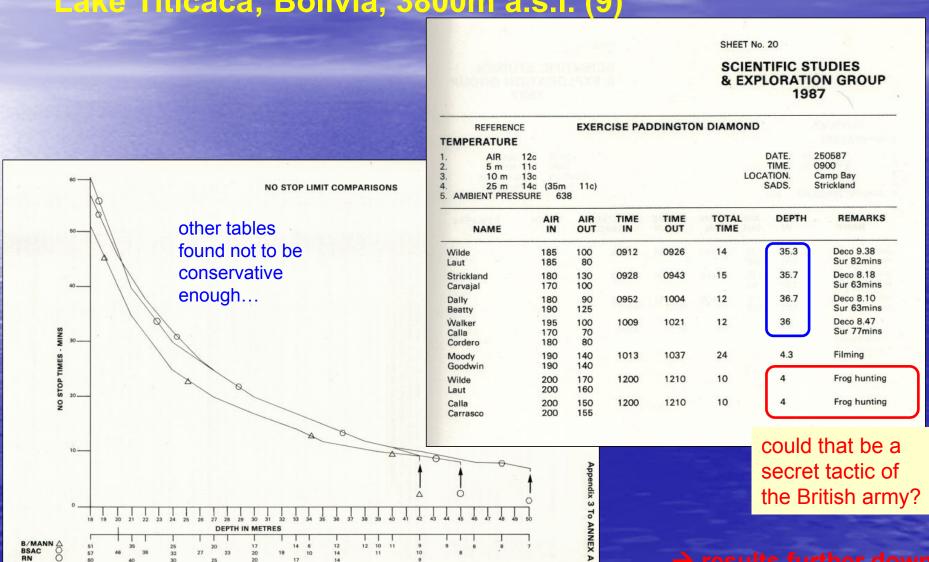
Ne Beat Mueller

Muehlehalden str 3

CH 8953 Det Kon

your faithfully Mac Moody

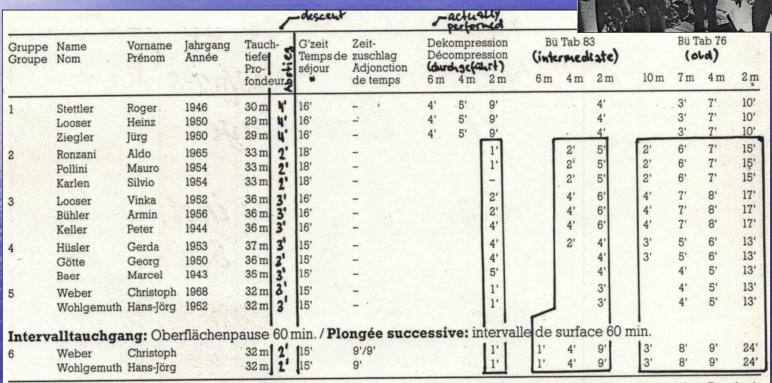
Safely back home!


Copy to

Mr B Mueller Dr P Rheiner Mr W Kuesen

Lake Titicaca; Bolivia, 3800m a.s.l. (8)

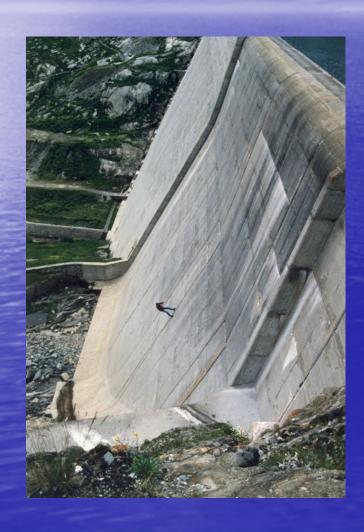
Lake Titicaca; Bolivia, 3800m a.s.l. (9)



Lago di Lucendro Trials (1)

Lago di Lucendro; Gotthard, 2134m a.s.l.; 23.8.1986 (1)

Lago di Lucendro Trials (2)



^{*}Grundzeit inkl. Abstiegszeit, d. h. die Gruppe I tauchte in 4 min auf 29–30 m ab und blieb dort 12 min. Die Gruppen 2 bis 5 orientieren sich am Decobrain oder an der provisorischen neuen Tabelle 701–2500 m ü. M.

2 days, 14 divers, 16 dives, 29-37m, BT=15-18min (from 1984-88: 50-60 divers, 55-60 dives)

Lago di Lucendro Trials (3b)

The very best always comes at the end!

Lago di Lucendro Trials (4)

Universitätsspital Zürich Departement für Innere Medizin Medizinische Klinik

Direktion

Prof. P. Frick Prof. A. Labhart

Rämistrasse 100, 8091 Zürich Telefon 01 - 255 11 11 Herrn

Beat Müller

Divetronic

St.Gallerstr. 119

8404 Winterthur

Zürich, den 25.8.86

Lieber Herr Müller.

Der 23.8.86 auf dem St.Gotthard war eine Höhepunkt. Sehr gute Organisation, 16 ₹auchgänge im Lago di Lucendro, 13 Tauchgänge davon 2 als Wiederholungstauchgänge zum Auswerten.

Beiliegend im Doppel das Protokoll. Auch wenn wir den Angaben hinsichtlich Tiefe und Minuten immer etwas skeptisch gegenüberstehen, so ist doch eines ganz klar: Für diese Tauchgängelim Bereich 30 - 36 m geben der Decobrain bzw. die neuen Tabellen für kurze Tauchzeiten vernünftige Wekompressionen. Ich habe bei dieser Gelegenheit erfahren, dass die Gruppe 2 regelmässig mit dem Decobrain in Bergseen taucht. Herr Karlen wird jetzt protokollieren.

Muttsee Trials (1)

First reconnoiter dives (August); 2500m a.s.l.; 1988

...still the highest dives ever made in the Alpes!

(left to right: E. Völlm, B. Müller, E. Lochbronner at preliminary dives Muttsee, 1988)

Muttsee Trials (2)

KURZBERICHT ZUM
REKOGNOSZIERUNGS - TG

- VERTEILER: Prof.Dr.A.A.Buehlmann - alle Teilnehmer
 - G.Goette (Mitorganisator)

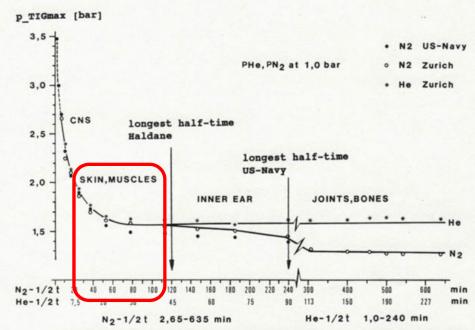
4. Verwendete Tabellen u. Computer

- mehrere Saetze von speziellen Tauchtabellen, mit folgenden Merkmalen:
 - * Beruecksichtigung der Anflugsrampe
 - * Beruecksichtigung verschieden langer Adaptionszeiten
 - * Beruecksichtigung des Oberfl.-Luftdrucks gem. ISO
 - * Einbezug einer Abstiegsrampe von 10m/min. beim TG
 - * Einbezug einer Aufstiegsrampe von 10m/min. beim TG
 - * hydrostat. Wasserdruck von Suesswasser
 - * KEIN Tiefenzuschlag
- * Koeffizientensaetze ZHL-12 und ZHL-16; die jeweils "kuerzeren" Tabellen wurden effektiv eingesetzt
- Tauchcomputer Deko-Brain, Prog. P2-2
- Tauchcomputer ALADIN PRO, ZHL-6 (Versuchsmodelle)
- Tauchtabellen '86, 701-2500m (zur Kontr.)

6. Uebersicht der Tauchgaenge

Adapt.	Rep.TG?	Int'v.	Pers.	Profil	eff.Deko	
0:45'	Nein	 	2 ;	39m / 15'	4m/2.5' + 2m/5.5	•
1:06'	Nein	co	1	39m / 21'	4m/2' + 2m/4'	
4:50'	Ja	3:35'	2	33m / 18'	4m/2' + 2m/4'	
4:50'	Ja	3:12'	1	33m / 18'	2m/2'	

Die exakten Profildaten, sowie weiteren wichtigen Randbedingungen, wie Luft- und Wassertemperaturen, verwendete Anzuege, Anfahrtsrampen, Luftdruecke etc., sind den TG-Protokollen zu ent-


Wie erwartet, traten bei keinem der Taucher irgendwelche Symptome einer inadequaten Dekompression auf.

Muttsee Trials (3)

3.3 Tissue Tolerances (max. tissue pressures) at fixed ambient pressure

Tolerated pressure of inert gas at an ambient pressure of 1.0 bar as a function of the half-value times for nitrogen and helium. •PN₂ calculated in correspondence with the tables of the US Navy; °PN₂ and *PHe determined experimentally in Zurich•

Muttsee Trials (4)

Administrative / Logistics documentation

MUTTSEE-TAUCHEN VOM 21-23.10.88

(Zuordnung d. Profilkombinationen)

		TG1 (Ers	:-Touchgange)	Inter-				TG2	(RepTaud	ginge)
#	Anz.	Profil (Tiefe/Zeit)	Namen d.Taucher	vall	#	Anz	ZZ	EFFEK.	Profil (Tiefe/Zeit)	Namen d. Taucher
12	1	33/21	(Zanker)	254	49	1	5	13	45/18	Zanker
b	2	33/21	(Wirth / Gotte)	239	20	2	5	13	45/18	flirth/Gotte
2.	2	39/18	fluold/Brugger	246	17	2	5	10	42 115	PUnold/Brugger
3	2	42/18	Müller/Müller ?	246	21	2	5	10	48/15	Müller / Müller
1	1	45/12	Denoth		-	-	-	_		-
5	2	45/15	Schifferle/Dürst	246	15	2	6	12	39/18	Schifferle Dar
6	2	45/15	Funold Brüsger	213	16	2	6	12	39/18	Funold Brugger
7	2	45/18	Holliger/Flury	277	18	2	5	13	42/18	Holliger Flury
8	2	45/18	Flirth / Gotte		-	-	-			
19	2	51/15	Maller / Haller ?	202	22	2	4	8	57/12	Müller Müller
40	2	57/12	Rauber/Caprez	210	24	2	4	11	60/15	Pouber/Capres
41	2	60/15	Rauber/Caprez	180	23	2	4	8	60/12	Rouber / Capre
12	2	39/25*	Denoth/Zanker	103	25	1	[4]	25	33/[26]	Denoth
13	2	39/25*	Schiffele Durst	117	26	2	[4]	25	33/[26]	Schifferk Dars
14	2	33/25	Holliger/Flury	99	27	2	[4]	25	33/[24]	Holliger/Flur
Total:	28	* mit 241-11	6A berechnet		Total	:24			现象25-27:7	Deko war direkt

(Rest: EHL-12/T86 Spez.

Vorberechnet (entspricht ~ 33m/27

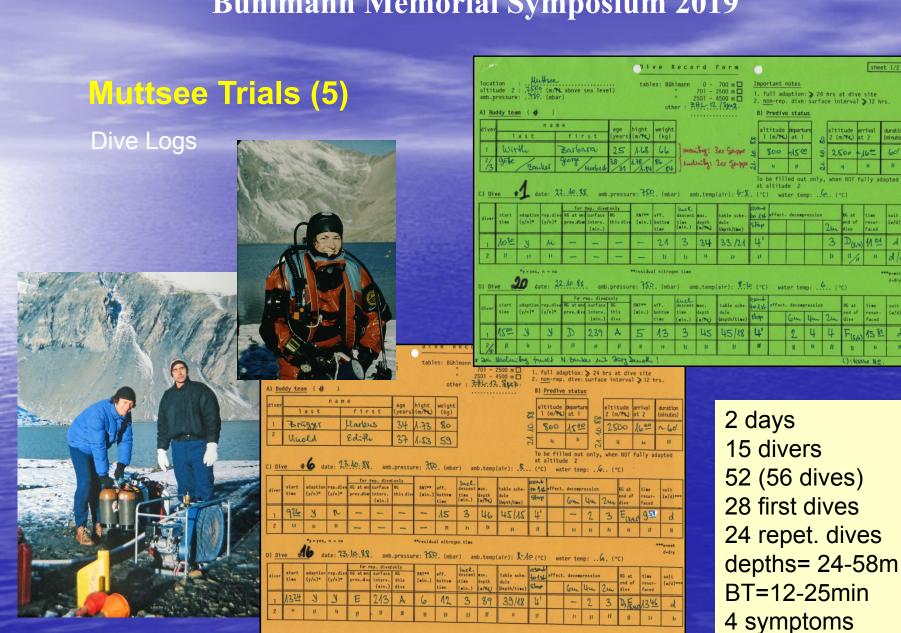
gem. Tab. 86 11 a 33m/1 Bergseetauchen "Muttsee" vom 23.10.88 bis 23.10.88 Notfalldispositiv Blatt

- 1) Was tun?
- 1. Sofortige Bergung aus dem Wasser
- 2. LESOMA unter Verwhdung der Notfall-Koffern, 02
- 3. bei Verdacht auf arterielle Gasembolie: telefonische Verständigung REGA von der Muttseehütte aus (2 Meldeläufer) und falls Funkgerät vorhanden: Hüttenwart zusätzlich anfunken ($\underline{\textit{HECTOR UNO}}$)
- 4. Lagerung des Verunfallten, Witterungsschutz
- 5. Landestelle Helikopter (ø 30m) räumen von ALLEM Material
- 2) Standort Notfallkoffer:
 - a) während Tauchen: bei Kompressoren am See
 - b) sonst : Muttseehütte, Aufenthaltsraum
 - c) währendHeli-Flug: No 1 im Helikopter (2. Tag) • 2 am See

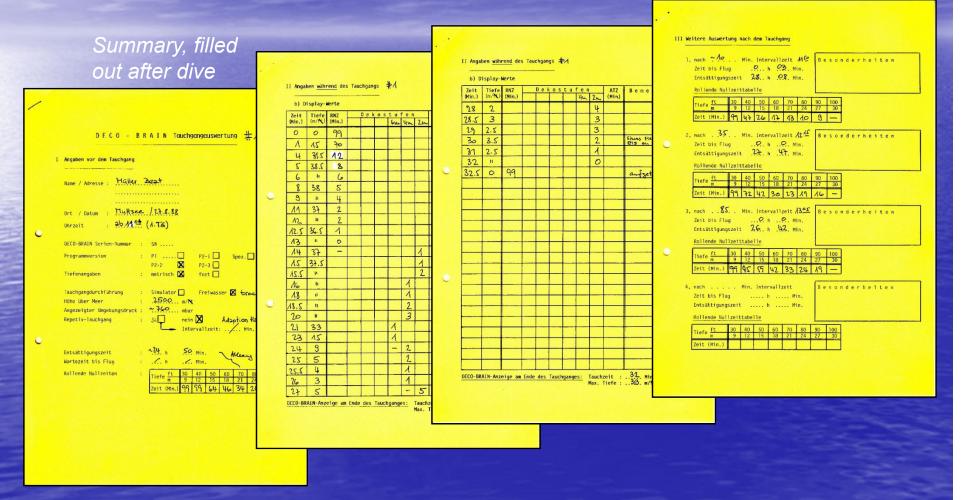
Telefonnummern:

- 01/ 47 47 47
- Heli-Linth/ 058/ 34 30 85 Mollis
- Druckkammer- 01/255 20 36 labor/ZH

(2. Tag)


- Kraftwerke Linth-Limmern/ Tierfehd 058/ 84 31 67 (Hr.D. Bächtiger, H. Müller, H. Zweifel)

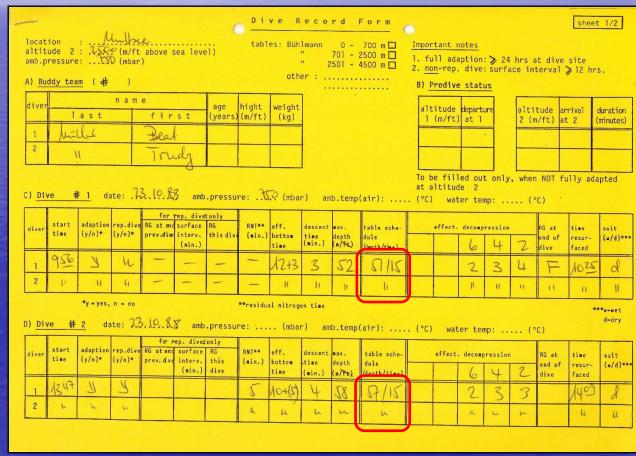
Standort Funkgeräte


a)	während Tauchen:	in der Hütte: HECTOR UND	
		am See : HECTOR DUE	
b)	sonst :	Muttseehütte, Aufenthaltsraum	
c)	während Heliflug:	l bei übrigen Teilnehmern: HECTOR	L

1 im Heli

: HECTOR DUE

Muttsee Trials (6a)



Protocol data, recorded every 1-2minutes and written on a wrist-slate

Muttsee Trials (6b)

Summary, filed out after dive

Protocol data transferred from wrist slate notices, filled out during the dive; Deco Brain readings (here: P2-2).

Muttsee Trials (7)

G. Götte

2 days, 15 divers, 56 dives, 24-58m

Analysis of Open Water Dives at Altitude 1988

C) experimental dive weekend of october / ZHL-16 schedules
(23.10.88 only)

NOTE: 1) ascent from 800m to 2500m was done by helicopter in 10 minutes two days before (21.10.88)

date	dive	-max.depth	-adapt.time -bottom time -stop time -interv.time	1 11	n-dives		symptoms
23.10.	#12	2500 39 6 4 2	~ 39 hrs 25* 3 5 7	air	2	0	
	#25	33 4 2	25 * 3 5	"	1	1	muscles,
23.10.	#13	2500 39 6 4 2	~ 39 hrs 25 ** 3 5 7	air	2	0	
	#26	33 4 2	25 * 3 5	"	2	2	muscles,
23.10.	#14	2500 39 6 4 2	~ 39 hrs 25 * 3 5 7	air	2	0	
	#27	33 4 2	25 * 3 5	"	2	. 1	muscles,
	* C	alculate	d	total	11	4	-

RG: F (38.3'), G (54.3')

Bühlmann Memorial Symposium 2019 Dives at Mount Kenia (1988)

Dives at Mount Kenia 1988

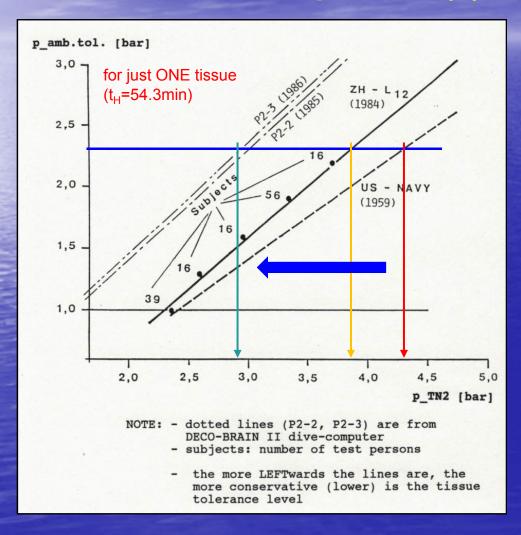
- "private expedition of 2 Swiss individuals (M. Weber, W. Keusen)
- at that time M. Weber was living in Kenia at approx. 1800m
- W. Keusen came directly from Switzerland
- both used special designed Aladins
- breathing gas was air only
- all dives with dry suits
- on ascent an intermediate stop was done at approx. 3500m
- overall duration 8-10 days
- in total 18 dives between approx. 4400m and 4780m
- depths in the range of 10m-15m, bottom times 20-30min
- No DCS symptoms of any kind but exhaustion due to lack of enough oxygen

(data obtained from private communication with Mr. Weber)

Results and Consequences

→ For more details ref. to Appendices

Results and Consequences (1)


(all data from the period of 1981-1991)

The testing and operational "envelope":

- Extremely broad range of diving candidates
- Altitudes from 0 to 4780m asl (chamber: 4200m asl)
- Single and repetitive dives (up to 3 consecutives); surface intervals from 10-120min
- Tests done with drastically reduced stop times
- Chamber and real dives
- Depths down to 500m and even 575m (chamber)
- Bounce dives and saturation dives (30m 220m)
- Recreational dives and hyperbaric work, from minutes to hours
- Tables and computer with several 100'000 real dives
- Air, nitrox, heliox, other mixed-gases, O2 decompression
- Extremely reliable for multi-gas diving and adaption
- In short: one of the best tested and proofed systems ever!

→ For more details ref. to Appendices

Results and Consequences (2)

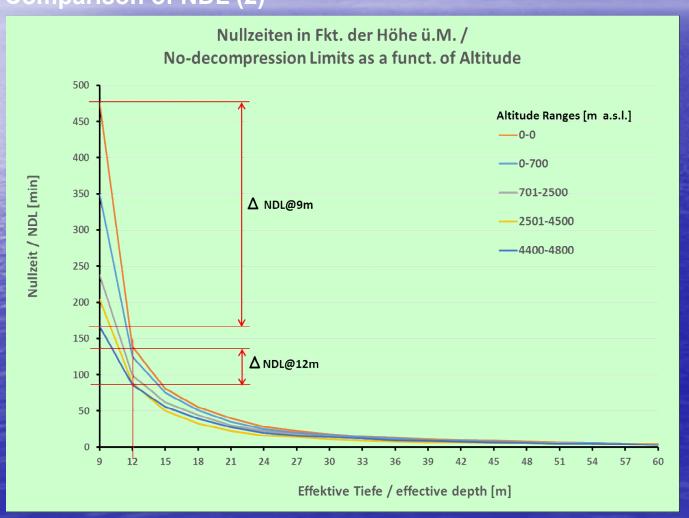
Careful analysis of hundred of dive profiles executed with dive computers led to a refinement of the underlying set of coefficients towards higher tolerated ambient pressures (reduced gradients) for a given tissue inert gas pressure.

It also shows the dramatic change compared to US-Navy and the original ZHL-12 limits.

Results and Consequences (3)

Comparison of NDL (1)

Values attained by using ZHL-12 and ZHL-16B


		ND	L times in [m	nin]	
Altitude range [m a.s.l.]	0-0	0-700	701-2500	2501-4500	4400-4800
Altitude of adaption [m a.s.l.]	0	0	701	4500	4400
Altitude of calculated dive [m a.s.l.]	0	700	2500	4500	4800
Ramp to upper range limit [hr]	no	no	1	no	6
Surface Interval at dive site before dive [hr]	>24	0	0	>24	3
6					

	6					
	9	475	349	238	204	167
	12	139	125	99	88	86
	15	81	75	62	50	56
	18	55	51	44	32	39
	21	40	35	30	22	27
	24	28	25	22	16	20
_	27	22	20	18	14	16
Depth [m]	30	18	17	15	11	14
ŧ	33	15	14	12	9	12
ер	36	13	12	10	8	10
	39	11	10	9	7	9
	42	10	9	8	7	8
	45	9	8	7	6	7
	48	8	7	6	6	6
	51	7	6	6	5	5
	54	6	6	5	5	5
	57	5	5	4	4	4
	60	5	4	4	4	3

bold values: as published on tables blue values: added by calculation

Results and Consequences (4)

Comparison of NDL (2)

Results and Consequences (5)

The final System ZHL-16 (as published)

	LACTURE.			CONTACTOR OF	
		ZH-L	16A	ZH-L16B	ZH-L16C
compart-	half-	(theor	etical)	table	computer
ment	time	b	a	a	a
#	[min]	[-]	[bar]	[bar]	[bar]
1	4,0	0,5050	1,2599	1,2599	1,2599
2	8,0	0,6514	1,0000	1,0000	1,0000
3	12,5	0,7222	0,8618	0,8618	0,8618
4	18,5	0,7825	0,7562	0,7562	0,7562
5	27,0	0,8126	0,6667	0,6667	0,6200
6	38,3	0,8434	0,5933	0,5600	0,5043
7	54,3	0,8693	0,5282	0,4947	0,4410
8	77,0	0,8910	0,4701	0,4500	0,4000
9	109,0	0,9092	0,4187	0,4187	0,3750
10	146,0	0,9222	0,3798	0,3798	0,3500
11	187,0	0,9319	0,3497	0,3497	0,3295
12	239,0	0,9403	0,3223	0,3223	0,3065
13	305,0	0,9477	0,2971	0,2850	0,2835
14	390,0	0,9544	0,2737	0,2737	0,2610
15 16	498,0 635,0	0,9602 0,9653	0,2523 0,2327	0,2523 0,2327	

- A verified set of 16 tissue group halftimes and their coefficients a,b for air with adaption to table- and computer use.
- A similar set exists for Helium.
- With more than 1 inert gas breathed, resulting factors a, b are calculated on the basis of their momentary tissue pressures.

Results and Consequences (6)

Termination of project:
Report at the Annual
Instructor Meeting 1989
(summary of all high altitudes test dives from 1984 to 1988)

Practical Applications and Special Environments

Practical Applications and Special Environments: Space (1)

Excursion: Decompression in Space (Bühlmann's involvement with NASA)

Ambient pressure in space craft: $5 \rightarrow 10.2 \rightarrow 14.7$ psi O_2 -content: $100\% O_2 \rightarrow 26.5\% \rightarrow 21\%$ (today)

Ambient pressure in EVA suit: 3.75-5.8 psi O_2 -content: 100% O_2

 pN_2 -SC / ptot-EVA (max) = 14.7*0.79/:4 = **2.9** (too high!)

take longest half-time -> max. pN_2 -ratio = **1.27**

EVA O₂ pre-breathe time: approx. **30min**

EVA: extra-vehicular activity

→ ref. to Appencies

Practical Applications and Special Environments: Space (2)

Historical Data on Cabin Atmospheres

Program	Cabin Pressure, kPa (psia)	Cabin Oxygen Concentration, volume %	EVA Suit Pressure, ⁽¹⁾ kPa (psia)	EVA O ₂ Pre- breathe Time, minutes	EVA Prebreathe Conditions
Mercury	34.5 (5)	100	-	-	-
Gemini/Apollo	34.5 (5)	100	25.8 (3.75)	0	-
Skylab	34.5 (5)	70	25.8 (3.75)	0	-
Shuttle	70.3 (10.2)	26.5	29.6 (4.3)	40	In-suit (after 36 hours at 70.3 kPa)
	101.3 (14.7)	21	29.6 (4.3)	240(3)	In-suit
ISS/US	101.3 (14.7)	21	29.6 (4.3)	120-140	Mask and in-suit; staged w/exercise
				240(3)	In-suit
Salyut, Mir, ISS/Russian	101.3 (14.7)	21	40.0 (5.8)(2)	30	In-suit

References: Carson, et al. (1975), McBarron, et al. (1993), Waligora, et al. (1993), NASA (2002), NASA (2003).

from Scheuring et. al., "Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles" 16th Annual Humans in Space, Beijing, China, May 2007

Fundamentals of Decompression ENAE 697 - Space Human Factors and Life Support

^{(1) 100%} oxygen.(2) In earlier versions of the Orlan suit, the pressure could be reduced to 26.5 kPa (3.8 psia) for short-duration work regime.

⁽³⁾ Under emergency conditions, a minimum of 150 minutes of unbroken prebreathe is recommended.

Practical Applications and Special Environments:

Space (3)

Scott Kelly verbrachte fast ein Jahr auf der Raumstation ISS. Der gefährlichste Moment? Als er aus der Luke stieg zu einem...

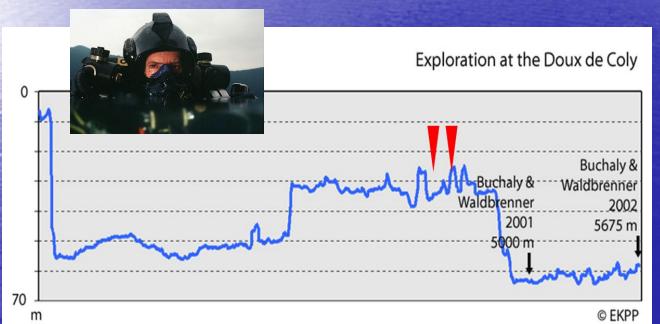
AUSFLUG
INS
INS
VON SCOTT KELLY

Ich bin seit 5.30 Uhr "auf den Beinen". Ich lege eine Windel an und
darüber flüssigkeitsgekühlte Unterwäsche. Nach dem Frühstück mache ich mich auf den Weg zur Luftschleuse. Kjell und ich atmen eine
Stunde lang reinen Sauerstoff, um
den Stickstoffgehalt im Blut zu senken
und uns so vor der Dekompressionskrankheit zu schützen.

4 x 201/200bar OC

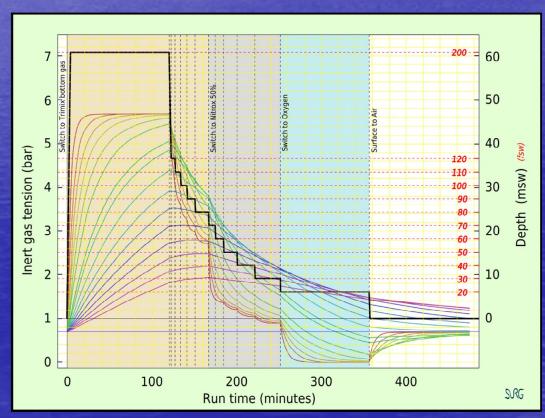
Practical Applications and Special Environments: Cave Diving (1)

Calculation of special tables for Olivier Isler's Doux de Coly Expedition and his push dives with **OC systems** (1989)



Practical Applications and Special Environments: Cave Diving (2)

Calculation of special tables for Olivier Isler's Doux de Coly Expedition and his push dives in 1989 with **OC systems**.



Two years later, in 1991, Isler reached 4'055 meters (13'303 feet) in Doux de Coly with his self-developed RI-2000 double-rebreather. In 1998, Isler arrives at 4'250m at a depth of -35m.

Practical Applications and Special Environments: Multi-Gas Technical Diving

ZHL-16x used as a basis for calculation algorithms in various decompression computers AND simulation software.

It has been further refined by the **Gradient Factor Method**, popular with technical divers.

Calculated inert gas uptake and elimination with gas switches for decompression (Tmx, EAN50; O2, air)

Practical Applications and Special Environments: Diving Computers

Models: Bühlmann, RGBM, VPM, combined; gas- or non gas-integrated; storage of up to 10

→ results from Deco Brain Trials in Appendices

...and many, many more...

Thank you for your attendance! ...and don't let the DKL die!

Contact the author:

	npression Research and Memorial Symposiums vom 2	
	waterpeday com an dia angraphana ak	fail Advance Diago wind night
		iair-Auresse. Diese wird riicht
Bitte leserlich in Druckbuchstaben schi		
Name , Vorname	eMail Adresse	PDF PPT
		🗆 🗆
		⊔ ⊔
		🛭 🗀
		🗆 🗆
		Ц Ц
		🗆 🗆
		🗆 🗆
		<u></u>
		Ц Ц
		🗆 🗆

Beat Müller
Grossmattstr. 8
CH-8964 Rudolfstetten
+41 56 631 25 25
btmueller@bluewin.ch

Request for ppt-presentation: use order form or send request to btmueller@bluewin.ch

Appendices (not shown)

Program and Faculty Members o	f the
Symposium 2019	(4 frames
• References	(4 frames
Further Publications	(3 frames

- The Deep Diving Research Laboratory of the University Hospital of Zurich (DKL)
- Early Deep Diving Trials
- Perfusion- and Diffusion based models
- **The Linear Perfusion Models ZHL-12/16**
- **Parametric NDL calculations today**
- Parameters for Bühlmann `86 Air Diving **Tables and later developments**
- Results and consequences (details)
- **Barometric Pressure as a function of Altitude**
- **Seawater Density**
- **Deco Brain Trials**
- **Decompression Problems in Space**
- **About the Author**

(3 trames

(15 frames)

(6 frames)

(6 frames)

(8 frames)

(6 frames)

(3 frames)

(9 frames)

(2 frames)

(2 frames)

(9 frames)

(6 frames)

(3 frames)

Bühlmann Memorial Symposium 2019 **Program and Faculty** Members of the Symposium 2019

Program of the Symposium 2019 (1)

Seminargebühren/Frais d'enregistrement/ Registration fees

Freitag/Vendredi/Friday

Taucher/plongeur/diver CHF 20.— Arzt/médecin/doctor CHF 50.—

Samstag/Samedi/Saturday

Taucher/plongeur/diver CHF 50.— Arzt/médecin/doctor CHF 200.—

Besichtigung Druckkammer frei Visite gratuite du laboratoire hyperbare Free visit of the decompretion chambre

Bitte Teilnahmegebühr VOR DEM ANLASS auf das Konto einzahlen:

Veuillez verser les frais de participation AVANT LE SYMPOSIUM sur le compte SUHMS suivant:

Please pay the registration fees BEFOR THE EVENT to the SUHMS account as follows:

UBS Zürich

Kontoinhaber: SUHMS, Lerchenweg 9, 2543 Lengnau IBAN: CH59 0025 7257 5938 5341 D BIC: UBSWCHZH80A

Auf Wunsch stellen wir Ihnen auch eine Rechnung

Facture sur demande. Invoice upon request.

Anmeldung/Inscription/Registration

Online: www.druckkammer.ch

oder/ou/or

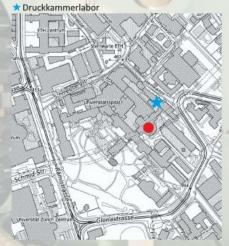
Swiss Underwater and Hyperbaric Medical Society SUHMS

Secretariat

Lerchenweg 9 2543 Lengnau

Tel. 032 653 85 46

www.suhms.org / suhms@datacomm.ch


Referenten

Dr. med. Daniel Blickenstorfer, Tauchmedizin SUHMS
Dr. iur. Thomas A. Bühlmann, Rechtsanwalt
Dr. med. Frank Hartig, Tauchmedizin
Dr. med. Francis Héritier, Tauchmedizin
Dr. med. Peter Knessl, Tauchmedizin, SUHMS
Prof. Dr. med. Jacek Kot, former president EUBS
Prof. Dr. med. Alessandro Marroni, DAN EUROPE
dipl.-Ing. ETH Beat Müller
Dr. med. Marc-Alain Panchard, Tauchmedizin, SUHMS
Prof. Dr. med. Erich Russi
Dipl. Physiker Albrecht Salm
Livio De Toffol

Dr. med. Jürg Wendling, Tauchmedizin SUHMS dipl.-Ing. ETH Ernst B. Völlm u. a. m.

Lageplan

Hörsaal Ost

www.suhms.org / www.druckkammer.ch

Bühlmann Symposium

Freitag/Vendredi/Friday 29.03.2019

16.00-20.00 Uhr/heure/hours

Samstag/Samedi/Saturday 30.03.2019

08.30-19.00 Uhr/heure/hours

Universitätsspital Zürich

Kleiner Hörsaal OST Druckkammerlabor

Program of the Symposium 2019 (2)

Im März 2019 jährt sich A. A. Bühlmanns Todestag zum 25. Mal. Die Schweizerische Gesellschaft für Unterwasser- und Hyperbarmedizin und der Verein Historisches Druckkammerlabor Universitätsspital Zürich organisieren deshalb ein Symposium mit vielen spannenden Themen und Referenten. U.a. wird Thomas Bühlmann, Sohn des Entwicklers des berühmten Dekompressionsmodelles, über die tauchmedizinische Forschung in Zürich von 1959 bis 1994 aus historischer Sicht berichten. Zudem stehen die Räumlichkeiten des seit 2005 stillgelegten Druckkammerlabors zur Besichtigung offen.

Mars 2019 marque le 25e anniversaire de la mort de A. A. Bühlmann. A cette occasion, la Société Suisse de Médecine Subaquatique et Hyperbare et l'Association du Laboratoire Hyperbare Historique de l'Hôpital Universitaire de Zurich organisent un symposium avec de nombreux sujets et intervenants passionnants. Entre autres Thomas Bühlmann, fils du développeur du fameux modèle de décompression, présentera un compte-rendu historique sur la recherche en médecine de plongée effectuée à Zurich de 1959 à 1994. De plus, les locaux du laboratoire hyperbare désaffectés depuis 2005 pourront être visités. Nous nous réjouissons de vous accueillir sur l'ancien lieu de travail du prof. Bühlmann.

25 years ago A.A. Bühlman passed away. For this reason the Swiss Underwater and Hyperbaric Medical Society (SUHMS) and the Historical Hyperbaric Chamber Zurich Association (DKL-USZ) are offering an extraordinary memorial symposium to all interested divers and physicians with a series of interesting lectures. Among others, Thomas Bühlmann, A.A. Bühlmann's son, who is engaged in historical research about his father's diving medical work from 1959 to 1994, will present a report about this period. In addition, there will be a unique opportunity to visit the remains of the former Hyperbaric Chamber Laboratory with a guided tour. We are looking forward to welcome you at A. A. Bühlmanns former work-place.

Freitag/Vendredi/Friday 29.03.2019

15:15 Registration

15:45 Opening

16:00 Current Diving and Hyperbaric Medical Research in Switzerland

16:30 Rapture of the deep, new insights and questions

17:20 Bühlmann and funnel chest? What is the link?

17:35 Decompression Models: «de-mystified»

18:40 General assembly «Historical Hyperbaric Chamber Laboratory Zurich Association»

19:10 General assembly «Swiss Underwater and Hyperbaric Medical Society»

19:40 Welcome Drink

Samstag/Samedi/Saturday 30.03.2019

08:15 Opening and Registration

08:30 Diving Medical Research in Zurich 1959 to 1994

09:10 A. A. Bühlmann - Beyond Diving Medicine

09:50 Coffee Break

10:10 History and Development of Decompression Algorithms

11:00 Milestones of the Deep Diving Research Laboratory Zurich

11:35 500 m Chamber Dive

11:55 Interview: Being Guinea Pig at 500 Meters

12:15 Lunch Break

13:00 Bühlmann's Saturation Diving Algorithm, deep mixed gas tables and how they changed practice in occupational diving

13:35 Tables for Mountain Lake Diving

14:25 Bühlmann-Algorithms for Dive Computers

15:00 The use of the Zurich Hyperbaric Chamber Laboratory during the late period 1994 until today

15:25 Coffee Break

15:45 Is diving a stress for pulmonary capillaries?

16:35 The DAN Europe Diving Data Base: Diving Modalities, Habits, Echogra-phic & Doppler Bubble Monitoring, Risk Factors, Incidents & Accidents

17:25 Extreme Recreational Diving

18:15 Farewell

Präsentationsfolien auf englisch, Referate in einer der drei Amtssprachen (D/F/I).

Diapositives en anglais, présentations en allmand, français ou italien.

Slides allways in English, talks in German, French or

The Faculty Members of the Symposium 2019

Dr. jur. T. Bühlmann (son)

References (1)

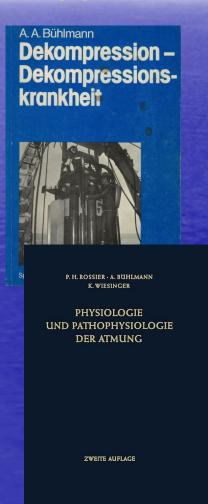
- 1) Bühlmann A.A. (1982), Experimentelle Grundlagen der risikoarmen Dekompression, Schweiz. Med. Wochenschrift, 112:48-59
- 2) Bühlmann A.A. (1984) Untersuchungen zur Dekompression bei erniedrigtem Luftdruck, Schweiz. Med. Wochenschrift, 114:942-947
- 3) Bühlmann, Albert A (1987). "Decompression after repeated dives". Undersea Biomedical Research. 14 (1): 59–66. ISSN 0093-5387. OCLC 2068005. PMID 3810993. Retrieved 2008-04-25.
- 4) Böni, M; Schibli, R; Nussberger, P; Bühlmann, Albert A (1976). "Diving at diminished atmospheric pressure: air decompression tables for different altitudes". Undersea Biomedical Research. 3 (3): 189–204. ISSN 0093-5387. OCLC 2068005. PMID 969023. Retrieved 2008-04-24.
- 5) Bühlmann, Albert A; Schibli, R; Gehring, H (March 1973). "[Experimental studies on decompression following diving in mountain lakes at reduced air pressure]". Schweizerische Medizinische Wochenschrift (in German). 103 (10): 378–83. PMID 4144210.
- 6) Bühlmann, Albert A (1989). "[Decompression problems in diving in mountain lakes]". Schweizerische Zeitschrift fur Sportmedizin (in French). 37 (2): 80–3, discussion 99–102. PMID 2799365.
- 7) Bühlmann, Albert A (1984). "[Decompression during lowered air pressure]". Schweizerische Medizinische Wochenschrift (in German). 114 (26): 942–7. PMID 6087447
- 8) Bühlmann, Albert A (1992). Tauchmedizin: Barotrauma Gasembolie Dekompression Dekompressionskrankheit (in German). Berlin: Springer-Verlag. ISBN 3-540-55581-1.
- 9) Bühlmann, Albert A (1995). Tauchmedizin (in German). Berlin: Springer-Verlag. ISBN 3-540-55581-1.
- 10) Bühlmann, Albert A (1986). The validity of a multi-tissue model in sport diving decompression. Presentation at the BSAC Diving Officers Conference, London, 1986.

References (2)

- 11) Bühlmann, Albert A (1988). Die Berechnung der risikoarmen Dekompression. Rechenmodellund Ergebnis der experimentellen Dekompressionsforschung. Schweiz. Medizinische Wochenschrift 118:185-197
- 12) Bühlmann Albert A (1986). Dekompressionstabellen Dekompressionscomputer, VDTL, Der Tauchlehrer, Heft 5, 1986
- 13) Bühlmann Albert A. (1987) Decompression after repeated dives. Undersea Biomedical Research 14:59-66
- 14) Bühlmann Albert A. (1975) Decompression Theory. Swiss Practice. In: Bennett&Elliott DH (eds) The Physiology and Medicine of Diving and compressed air work, 2nd ed., B&T, London pp 348-365
- 15) Bühlmann Albert A. (1987) Diving at Altitude. UHMS Symposium The Physiological Basis of Decompression, Duke University, Durham
- 16) Bühlmann Albert A. (1987). Die experimentellen Grundlagen der Bühlmann-Tabelle 86, Nereus Heft 25, Juni 1986
- 17) Götte George (1988) Bericht über den T*** Ausbildungskurs Bergseetauchen, Nereus, Februar 1988
- 18) Götte George (1987) Abschied von der Bühlmann-Tabellen 76, Nereus, 1987
- 19) Moody Marc, Capt RAOC (1987). Expedition Report Exercise Paddington Diamond (Lake Titicaca), 1987
- 20) Meier-Ewert Klaus (1986) Grundlagen der Dekompression und Berechnung von Dekompressionsprofilen mit Hilfe der ZHL-12 Koeffizienten. VDTL, Der Tauchlehrer Heft 4, Jan. 1986
- 21) Müller Beat A. (1986) Technische Kommission, Die neuen Tauchtabellen: Berechnungsgrundlagen der Bühlmann-Tabelle 86, Nereus Heft 25, März 1987
- 22) Müller Beat A. (1991) The new Bühlmann `86 Air Decompression Tables an Overview on the Historical, Scientific and Mathematical Background, inluding relevant Safety Aspects and Handling Rules. Annual Diving Officers Conference of the Irish Underwater Council, Dun Laoghaire, Nov. 1991
- 23) Müller B.A. (1992) idem (with update), Conference of the Directors of the Technical Committee of the Spanish Federation FEDAS, Barcelone, July 1992

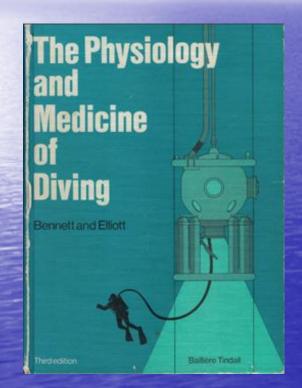
References (3)

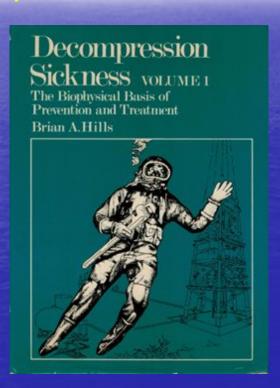
- 24) Müller Beat A. (1994) idem (with update), Premières Journées de la Plongée, Portuguese Underwater Sports Federation FPAS, Lisbon, 1994
- 25) Müller Beat A. (1986) Die Berechnungsgrundlagen der neuen Tabellen für Passfahrten und Fliegen ohne Druckkabine, Nereus, 1988
- 26) Müller Beat A. (1987) Bericht an Prof. Bühlmann: Höhenveränderungen nach Tauchgängen (Tabelle für Passfahrten und Fliegen ohne Druckkabine, 20.6.1987
- 27) Müller Beat A. (1987) Bericht an Prof. Bühlmann: Nachtrag zum Bericht Höhenveränderungen nach Tauchgängen, 28.9.1987
- 28) Müller Beat A. (1988) Kurzbericht zum Rekognoszierungs-Tauchgang im Muttsee (2500m ü.M.) vom 27.8.1988
- 29) Müller Beat A. (1988) Bericht an Prof. Bühlmann zu den Versuchs-Tauchgängen im Muttsee, Nov. 1988
- 30) Müller Beat A. (1989) Bericht an Prof. Bühlmann: Nullzeiten- und Dekompressionstabellen für Luft, 27.11.1989
- 31) Müller Beat A. (1988) Die Sicherheit von Tauchtabellen und –Computer; Presentation at the Federal Institute of Technology, Zürich, 1988
- 32) Müller Beat A. (1989) Erkenntnisse aus den Höhen-Versuchstauchgängen / Muttsee 1988, Presentation at the annual diving instructor meeting of the Swiss Federation SUSV, Zürich, 1989
- 33) Personal communication with Prof. Bühlmann 1980-1992
- 34) Personal communication with Dr. Max Hahn (analysis, calculations)
- 35) Personal communication with Dr. phys. Klaus Meier-Ewert (calculation programming, cross-checks)
- 36) Personal communication with Mr. George Götte (Lago di Lucendro and Muttsee)
- 37) Personal communication with Mr. Martin Weber (Mount Kenia dives)

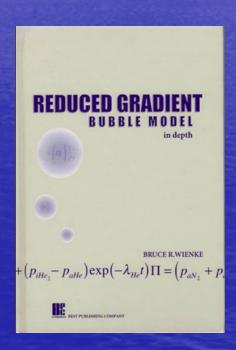

Further Publications (1)

Some of his publications

1961 (#1 to #5) "The way into depth"

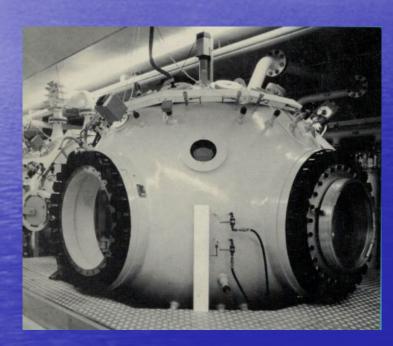

> 1st ed. 1952 2nd ed. 1958




Further Publications (2)

Different models, basic physiology of gas transport, DCS

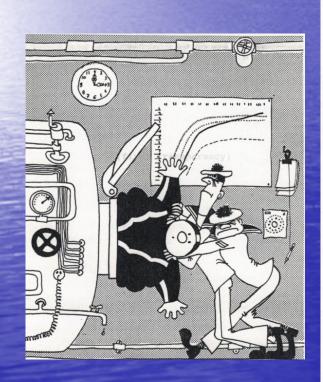
Different models, "thermodynamic decompression" (diffusion, bubble model), DCS


Gas transport, phase models, bubble-model

The Deep Diving Research Laboratory of the University Hospital of Zurich (DKL)

The "Lab" and the men behind (1)


16.5.1923 – 16.3.1994


Chamber at University Hospital Zurich; water tank module

The "Lab" and the men behind (3)

Location: Zürich, Switzerland

Operator: University Hospital, Zürich

Manufacturer: Pressure vessels by Gebrüder Sulzer, Winter-

thur, Switzerland

Completion: 1975

Technical details:

Operating pressure 0.5-101 bar Dimensions of chamber Diameter (mm) 2500 2000 2000 3500 Internal length (mm) 3200 1600 Hatch diameter (mm) 800 800 800 1300 Volume (m³) 10 6.5 22

Filled with air, heliox or pure oxygen; chamber 4 only water.

Purpose:

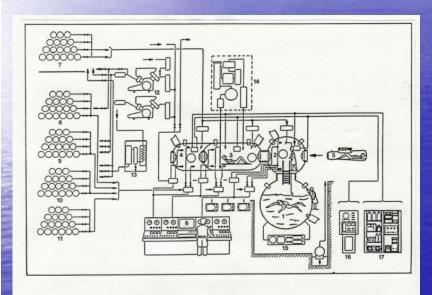
Development of practicable diving procedures for off-shore exploration (field oriented)

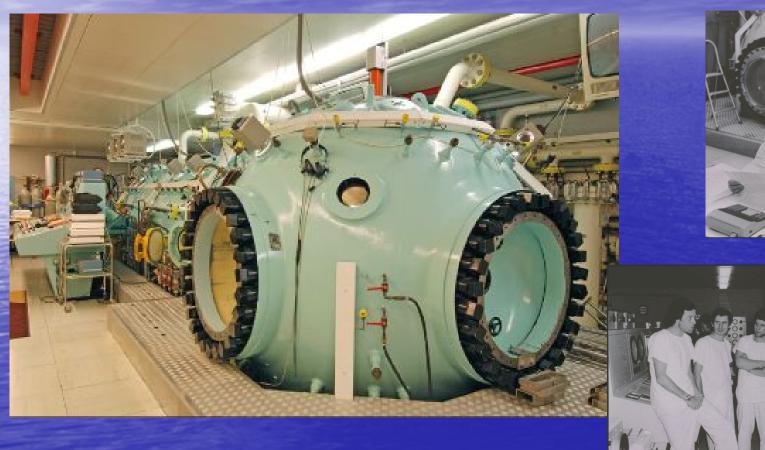
Solutions for special problems of deep diving down to 1000 m in form of basic research

Development of decompression and treatment tables

Development of decompression tables for high altitudes (mountain lakes)

The "Lab" and the men behind (4)




Fig. 2.15: schematic diagram of monitory-, supply-, and life-supporting systems and peripherals

1: wet chamber 10: air 11: helium 2: high pressure sphere 3: decompression chamber 4: pre-chamber/ lock 5: one-man transport chamber 6: control-/monitoring centre 7: storage breathing gases 8: oxygen 9: spec. gas mixtures 17: gas analyzing system

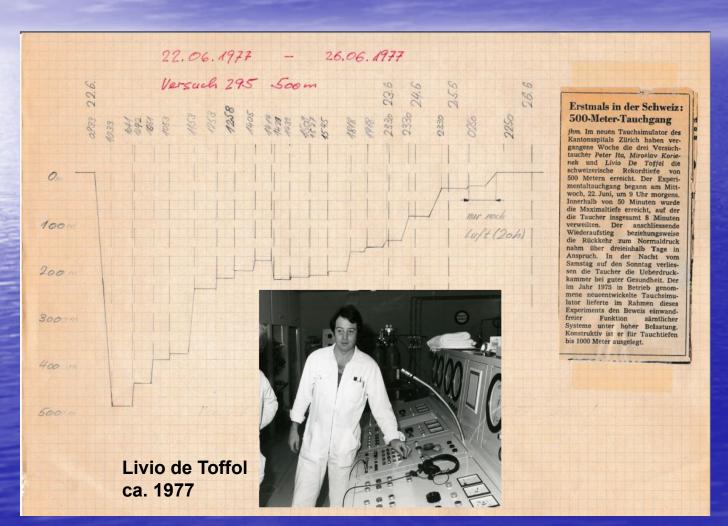
12: compressors 13: helium recovery unit 14: chamber: air conditioning/treatment unit 15: water treatment unit 16: medical surveillance

~6000 - 3200 -1600-Fig. 1.27: sectional view of chamber systems and dimensions 3: decompression chamber 1: wet chamber 2: high pressure sphere 4: pre-chamber (transfer)

The "Lab" and the men behind (5)

Link to Photo Galery: http://www.swiss-cave-diving.ch/gallery/DKL-Zuerich/DKL-ZH.html

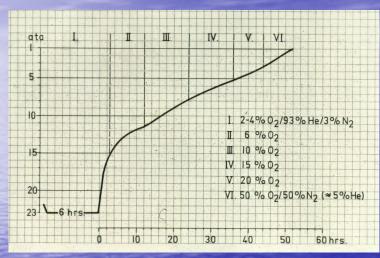
The "Lab" and the men behind (7)

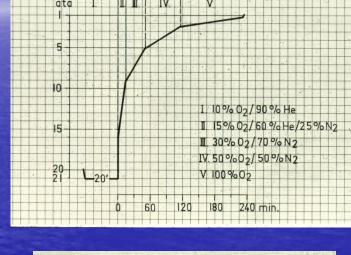


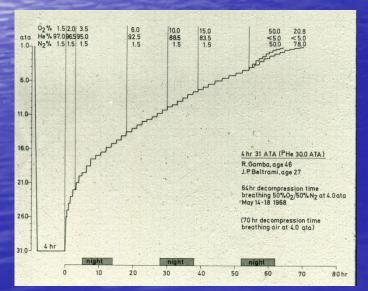
The "Lab" and the men behind (8)

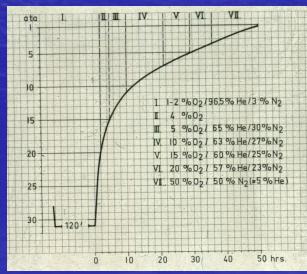
Livio de Toffol 2018

The "Lab" and the men behind (9)

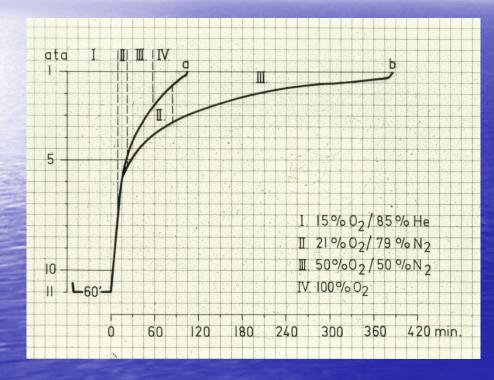

...after a successful trial (chamber dive)

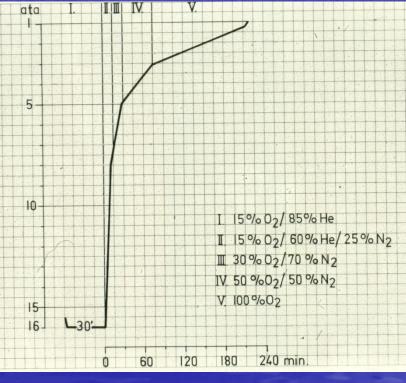

Mr. de Toffol

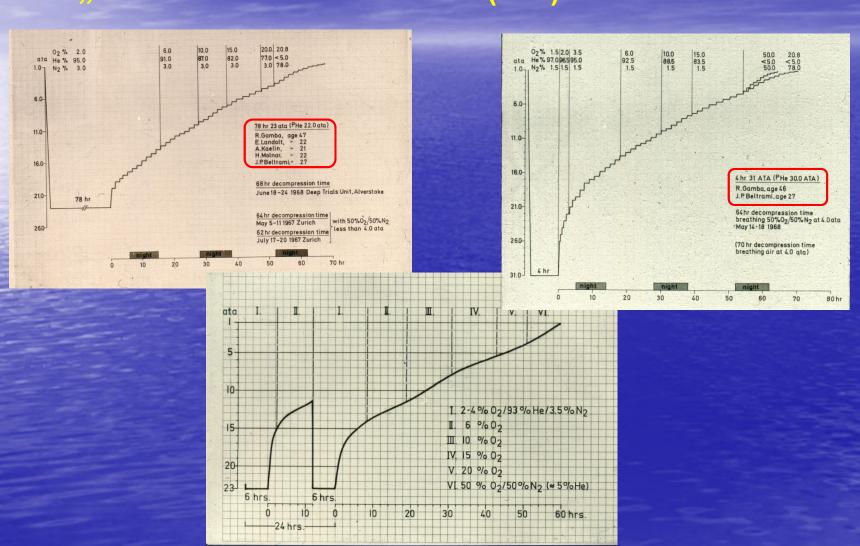

Prof. A.A. Bühlmann


Mr. B. Schenk, former Technical Director of the DKL

The "Lab" and the men behind (10a)







The "Lab" and the men behind (10b)

The "Lab" and the men behind (10c)

The "Lab" and the men behind (12)

68 Samstag/Sonstag, 5./6, Februar 1977 Nr. 30

WOCHENENDE

Reue Bürcher Beitung

Tauchen im Tank

SPUMS Journal Volume 29 No.2 June 1999

conducted led to a revision of practices and changes were made to guard book procedures. The SURVIVEX provided the opportunity to verify the guard book in a realistic

The ELSS capability had not yet been conclusively Kev Words demonstrated. Pods which weigh approximately 100 kg when fully laden with life support stores, food, water, medications etc. can be posted by ROV into the escape tower. providing extra time for the rescue forces to prepare. Difficulties have been noted when trialling the pods and a formal evaluation of the pod posting according to guard book procedures occurred during BLACK CARILLON 98.

Monitoring System

How does the RAN manage such a process? The RAN has implemented an internal 2 stage certification process addressing the material, engineering and operational aspects of the SERS with an additional annual audit of the system addressing these issues. The Remora is certified by the classification authority. Det Norske Veritas (DNV) for currently undergoing this certification process.

The SUBSAFE Board Submarine Escape and engineering representatives) is responsible for ensuring no hazard items represent an unacceptable risk prior to the conduct of these trials and in future operations.

Australian Defence Medical Ethics committee approval has been sought and granted for each phase of the

The RAN has developed and implemented a sophisticated escape and rescue organisation, the concept of which is being adopted by other major submarine produced using a 12-tissue model and in 1986 the actual set nations around the world. The organisation includes not of tables was produced based on 16 tissues. only the material hardware but a framework for review. accountability and progress. The Black Carillon exercise series will be followed by future exercises planned to practices using computers as on-line dive planners, maintain the momentum and in-house expertise in Bühlmann supported the adaptation of the Zurich tables for submarine escape and rescue.

in Charge, Royal Australian Navy Submarine and Underwater Medicine Unit, HMAS PENGUIN, Middle Head Road, Mosman, New South Wales 2088, Australia. Phone +61-(0)2-9960-0333. Fax +61-(0)2-9960-4435. E-mail Robyn. Walker. 150150@navy. gov.au

environment has been questioned in the past. Trials MILESTONES OF THE DEEP DIVING RESEARCH LABORATORY ZURICH

J Wendling, P Nussberger and B Schenk

Decompression, deep diving, history, hyperbaric facilities, hyperbaric research, mixed gases, research, tables.

Between 1959 and 1963 the deep diving pioneer Hannes Keller performed a series of depth records using heliox. He was assisted by the lung physiologist Professor A A Bühlmann of Zurich University. In 1961 application of a modified multi-tissue, perfusion limited, decompression algorithm for nitrogen and helium enabled an open sea dive to 305 m at Santa Catalina Island off California. However the price was a fatality. This dive was a break through for commercial diving, proving the feasibility of deep diving with helium

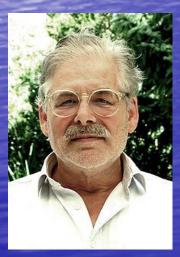
A research contract with Shell, to develop material safety with the recompression chamber suite decompression tables for offshore work, allowed the restructured research team at Zurich to construct a 100 ATA hyper- and hypobaric, multichamber, research and treatment facility, planned and directed by one of the authors (BS), an Rescue Subgroup (comprising operational, medical and engineer. Experimental dives were continued down to 220 and 350 m at Alverstoke, UK, in 1969, and to 575 m in Zurich in 1981. The original decompression tables were empirically modified and became widely used. The problems of calculated tables and true reality will be

> Altitude dive tables for scuba bounce diving were produced to meet the needs of military and police divers in Switzerland. Dive tables using the same algorithms as used for the deep dive experiments were calculated and tested for different altitude ranges. Bühlmann postulated a linear relationship of his supersaturation tolerance coefficients to the external pressure. In 1972 the first altitude table was

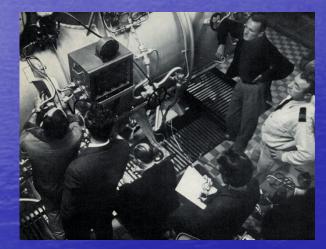
In a period of general rejection of any diving diving computers. The 1986 model has been further adapted to take into account workload, temperature, respiratory rate and inadequate decompression procedures specially LCDR Robyn Walker, MBBS, Dip DHM, is Officer considering the bubbles load of the lungs during certain

> The actual activities of the hyperbaric facility can be divided into the development of deep dive breathing apparatus and research into clinical hyperbaric oxygen

Neue Zürcher Zeitung vom 06.02.1977


Bühlmann Memorial Symposium 2019 **Early Deep Diving Trials**

Early Deep Diving Trials (1)


Birth of a new model: Early deep dives with Hannes Keller (1)

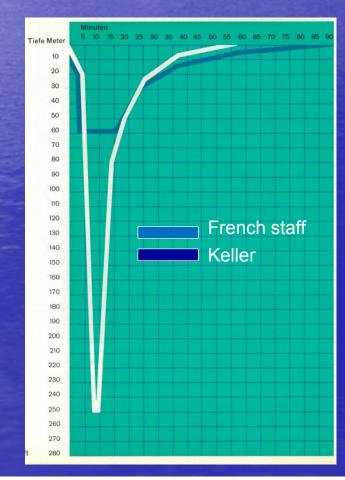
Toulon, French Navy, 25. April 1961

300m and 220m Heliox dives

H. Keller ca. 2005

Capt Stover USN....
Cmdr de Croulard, GERS

H. Keller & A.A. Bühlmann Trials with French Navy 1961; 300m

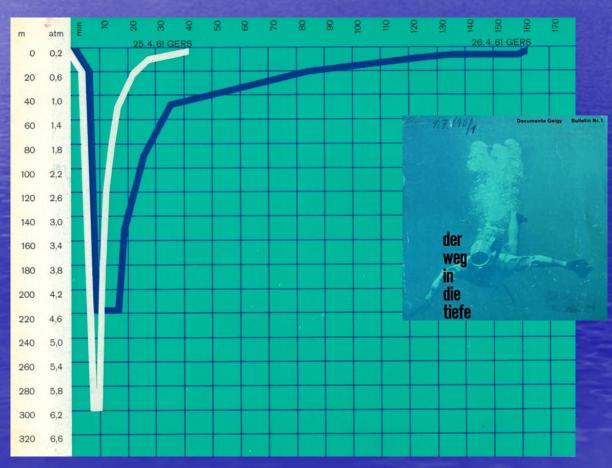

Early Deep Diving Trials (2)

Birth of a new model: Early deep dives with Hannes Keller (2a)

Toulon, French Navy, 4 November 1960

Early trials to 60m and 250m

Bottom time: 15 and 10min


Early Deep Diving Trials (3)

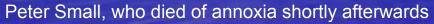
Birth of a new model: Early deep dives with Hannes Keller (2b)

Toulon, French Navy, 25. April 1961

300m and 220m dives within 2 days!

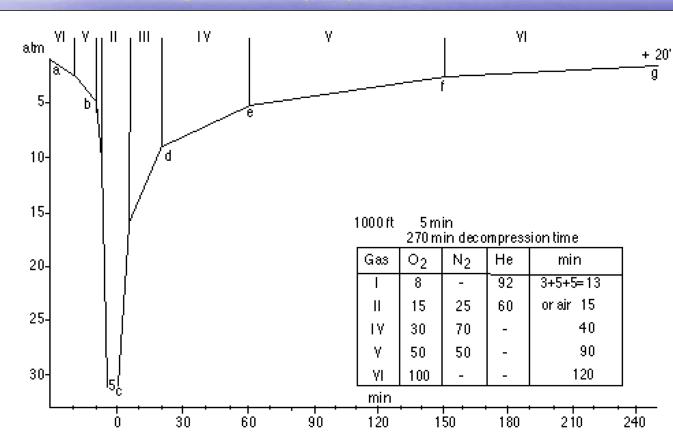
Bottom time: 10 and 18min

Early Deep Diving Trials (4a)


Birth of a new model: Early deep dives with Hannes Keller (3)

San Diego, off Catalina Island, US Navy, December 3, 1962

First 1020ft dive ever made by humans



Early Deep Diving Trials (4b)

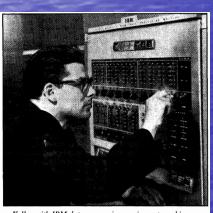
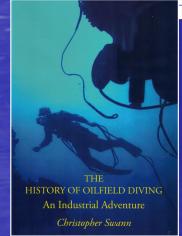


Figure 3. Compression and decompression profiles and gases used for a dive to 300 m (1,000 ft) for 5 minutes bottom time, two subjects. (Figure 6 in Keller and Bühlmann¹).

Early Deep Diving Trials (5)


Birth of a new model: Early deep dives with Hannes Keller (4)

Keller with IBM data processing equipment working on his decompression tables.

Triumph and Tragedy at once

Gas mixtures breathed through mask:

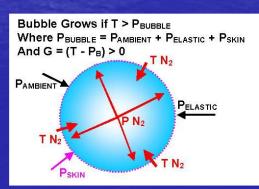
Bottom: 8% O₂ / 92% He

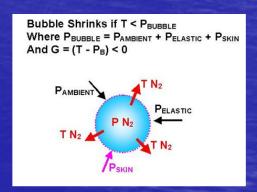
500ft: 15% O₂ / 60% He / 25% N₂

165ft: 30% O₂ / 70% N₂ 133ft: 50% O₂ / 50% N₂

50ft: 100% O₂

(the bell was filled with air. So after cut of external mixture supply from outside tanks at bottom, Keller was forced to breathe air on 300m / 30bar!)

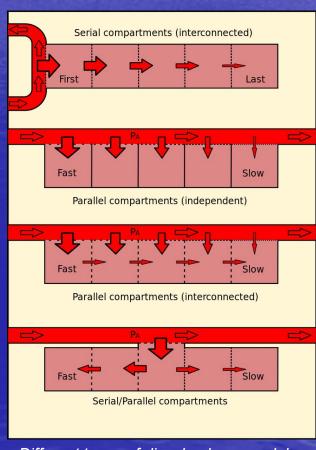

Bühlmann Memorial Symposium 2019 Perfusion- and **Diffusion based** models


Perfusion- and Diffusion based models (1)

General overview on models: concepts (1)

Two rather different concepts have been used for decompression modelling:

- The first assumes that dissolved gas is eliminated while in the *dissolved phase*, and that bubbles are not formed during asymptomatic decompression.
- by experimental observation, assumes that bubbles are formed during most asymptomatic decompressions, and that gas elimination must consider both *dissolved* gas and bubble phases.



Perfusion- and Diffusion based models (2)

General overview on models: dissolved phase types (2)

Early decompression models tended to use the dissolved phase models, and adjusted them by more or less arbitrary factors to reduce the risk of symptomatic bubble formation. *Dissolved phase mode*ls are of two main groups:

- Parallel compartment models, where several compartments with varying rates of gas absorption (half time), are considered to exist independently of each other, and the limiting condition is controlled by the compartment which shows the worst case for a specific exposure profile. These compartments represent conceptual tissues and are not intended to represent specific organic tissues, merely to represent the range of possibilities for the organic tissues.
- The second group uses serial compartments, where gas is assumed to diffuse through one compartment before it reaches the next.
- A recent variation on the serial compartment model is the Goldman interconnected compartment model (ICM).

Different types of dissolved gas models

Perfusion- and Diffusion based models (3)

General overview on models: outgassing mechanics (3)

The critical supersaturation approach

J.S. Haldane first used a (fixed) critical pressure ratio between the sum of the inert gas in each tissue and the surrounding ambient pressure. Further research by Workmann, Bühlmann et al. suggested that the criterion was not the ratio of pressures, but the actual pressure differentials.

At a given ambient pressure, the M-value is the maximum value of absolute inert gas pressure that a tissue compartment can take without symptoms of DCS. M-values are limits for the tolerated gradient between inert gas pressure and ambient pressure in each compartment

The no-supersaturation approach

According to the thermodynamic model of Hugh LeMessurier and Brian A. Hills, this condition of optimum driving force for outgassing is satisfied when the ambient pressure is just sufficient to prevent phase separation (bubble formation).

The model assumes that the natural unsaturation in the tissues due to metabolic reduction in oxygen partial pressure provides the buffer against bubble formation, and that the tissue may be safely decompressed provided that the reduction in ambient pressure does not exceed this unsaturation value. The natural unsaturation increases with depth.

The critical volume approach

The critical-volume criterion assumes that whenever the total volume of gas phase accumulated in the tissues exceeds a critical value, signs or symptoms of DCS will appear. This assumption is supported by doppler bubble detection surveys. The consequences of this approach depend strongly on the bubble formation and growth model used, primarily whether bubble formation is practicably avoidable during decompression.

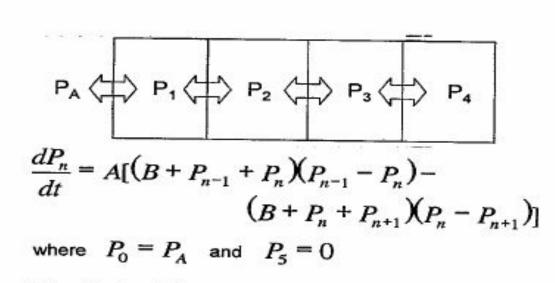
Perfusion- and Diffusion based models (4)

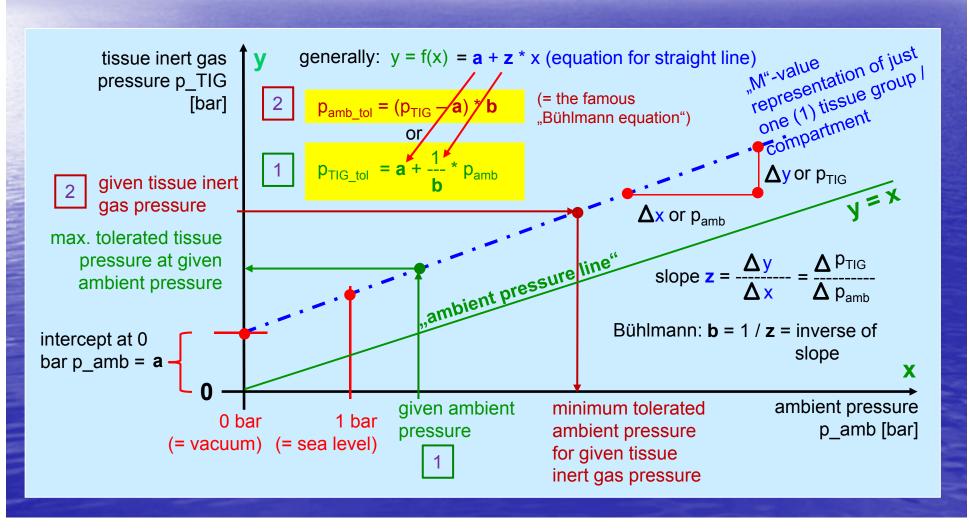
General overview on models: general remarks/conclusions (4)

- More recent models attempt to model bubble dynamics, also by simplified models, to facilitate the computation of tables, and later to allow real time predictions during a dive.
 - The models used to *approximate bubble dynamics* are varied, and range from those which are not much more complex that the *dissolved phase* models, to those which require considerably greater computational power.
- None of the decompression models can be shown to be an accurate representation of the physiological processes, although interpretations of the mathematical models have been proposed which correspond with various hypotheses.
 - They are all approximations which predict reality to a greater or lesser extent, and are acceptably reliable only within the bounds of calibration against collected experimental data.

Perfusion- and Diffusion based models (5)

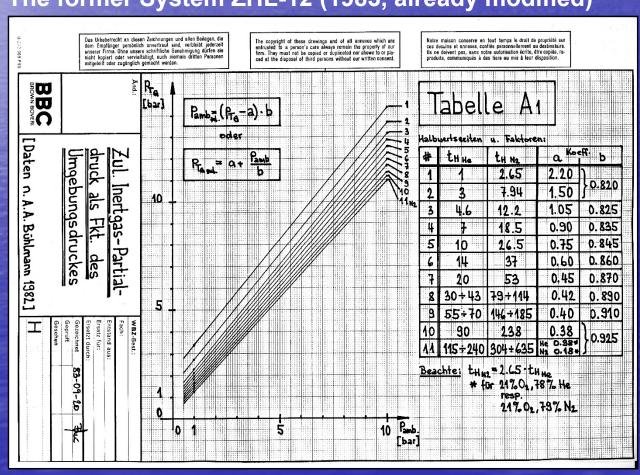
DCIEM (Canada) serial 4 compartment model



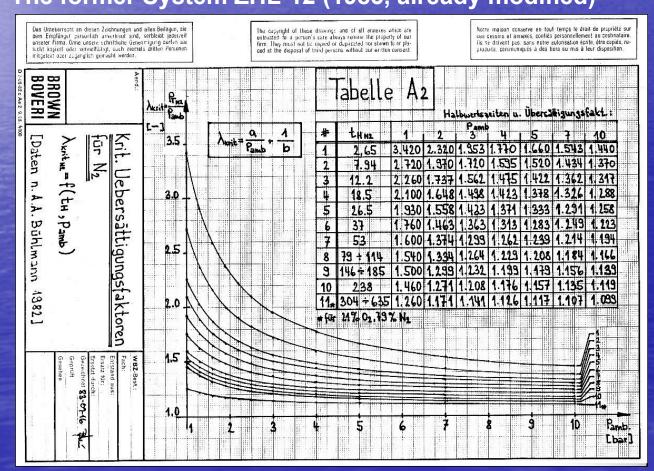

Fig. 6. Serial compartments decompression model - Kidd-Stubbs Model (Canadian/ DCIEM).

(Source: DEVELOPMENT OF THE DCIEM 1983 DECOMPRESSION MODEL FOR COMPRESSED AIR DIVING, September 1984, DCIEM No. 84-R-44, R.Y. Nishi, G.R. Lauckner. Defence and Civil Institute of Environmental Medicine, Ontario, Canada)

The Linear Perfusion Models ZHL-12/16


The Linear Perfusion Models ZHL12/16 (1)

What do the factors **a**, **b** represent?


The Linear Perfusion Models ZHL12/16 (2a)

The former System ZHL-12 (1983, already modified)

The Linear Perfusion Models ZHL12/16 (2b)

The former System ZHL-12 (1983, already modified)

The Linear Perfusion Models ZHL12/16 (2c)

Die Koeffizienten des Systems ZHL-12

Version : Bühlmann, 28.05.1986 (Aenderungen Nr. $1 \div 4$) verwendet: neue Tabelle 0-700 m und 701-2500 m des SUSV/VDST

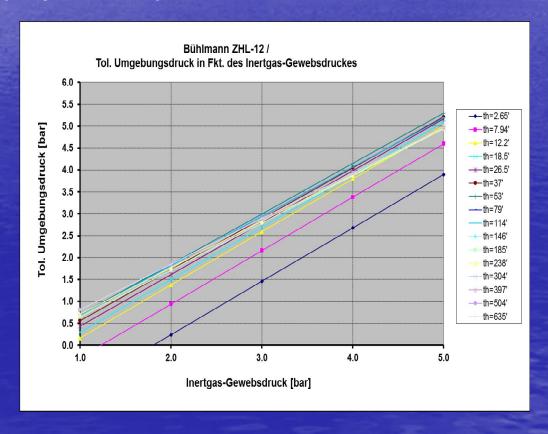
 $P_{amb.tol} = (P_{TIG} - a) \cdot b$ (bar)

Pamb.tol: tolerierter Umgebungsdruck

TIG : N2-Lösungsdruck im Gewebe

a,b : ZHL-12 Koeffizienten

Gewebe	Komp. Nr.	t½ (min)	Koeff.a (bar)	Koeff.b
Gehirn,	1	4.0	1.906	0.810
Rückenmark	2	8.0	1.450	0.810
	2 3	12.5	1.040	0.810
	4 5	18.5	0.880	0.830
		27.0	0.717	0.845
Haut,	6	38.3	0.575	0.860
Muskulatur	7	54.3	0.468	0.870
	8	77.0	0.441	0.903
	9	109.0	0.415	0.908
Innenohr	10	146.0	0.416	0.939
	11	187.0	0.369	0.946
	12	239.0	0.369	0.946
	13	305.0	0.255	0.962
Gelenke,	14	390.0	0.255	0.962
Knochen	15	498.0	0.255	0.962
	16	635.0	0.255	0.962


As originally planned for SUSV / VDST tables.
Some minor adaptins were later made

towards ZHL-16B.

The Linear Perfusion Models ZHL12/16 (2d)

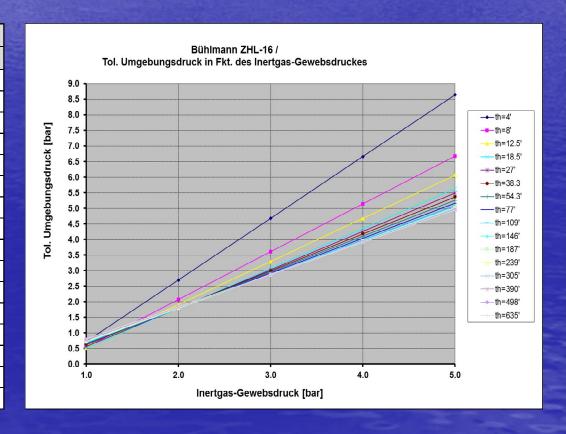
The former System ZHL-12 (as published)

			S. Santa	
	HWZ (tH)	Letter	а	b
#	[min]	Code	[bar]	[]
1	th=2.65'	Α	2.2000	0.8200
2	th=7.94'	В	1.5000	0.8200
3	th=12.2'	С	1.0500	0.8250
4	th=18.5'	D	0.9000	0.8350
5	th=26.5'	Е	0.7500	0.8450
6	th=37'	F	0.6000	0.8600
7	th=53'	G	0.4500	0.8700
8	th=79'	Н	0.4300	0.8900
9	th=114'	I	0.4300	0.8900
10	th=146'	J	0.4300	0.9310
11	th=185'	K	0.4300	0.9310
12	th=238'	L	0.3500	0.9430
13	th=304'	М	0.2300	0.9620
14	th=397'	N	0.2300	0.9620
15	th=504'	0	0.2300	0.9620
16	th=635'	Р	0.2300	0.9620

From: Decompression – Decompression Sicknes, 1983

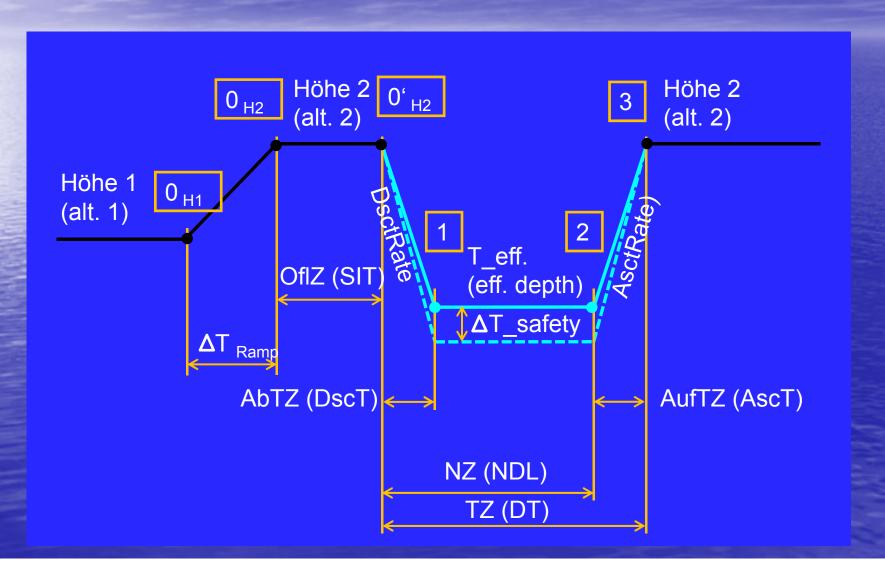
The Linear Perfusion Models ZHL12/16 (3a)

The new System ZHL-16 (as published)


			ZH-L	16A	ZH-L16B	ZH-L16C
	compart- ment #	half- time [min]	(theore	etical) a [bar]	table a [bar]	computer a [bar]
	======+	-=====	+======	+======	+======	+======
	1	4,0	0,5050	1,2599	1,2599	1,2599
	2	8,0	0,6514	1,0000	1,0000	1,0000
	3	12,5	0,7222	0,8618	0,8618	0,8618
	4	18,5	0,7825	0,7562	0,7562	0,7562
	5	27,0	0,8126	0,6667	0,6667	0,6200
5	6	38,3	0,8434	0,5933	0,5600	0,5043
	7	54,3	0,8693	0,5282	0,4947	0,4410
	8	77,0	0,8910	0,4701	0,4500	0,4000
	9	109,0	0,9092	0,4187	0,4187	0,3750
	10	146,0	0,9222	0,3798	0,3798	0,3500
	11	187,0	0,9319	0,3497	0,3497	0,3295
	12	239,0	0,9403	0,3223	0,3223	0,3065
	13	305,0	0,9477	0,2971	0,2850	0,2835
	14	390,0	0,9544	0,2737	0,2737	0,2610
	15	498,0	0,9602	0,2523	0,2523	0,2480
	16	635,0	0,9653	0,2327	0,2327	0,2327

- A verified set of 16 tissue group halftimes and their factors a,b for air with adaption to table- and computer use.
- A similar set exists for Helium.
- With more than 1 inert gas breathed, resulting factors a, b are calculated on the base of their momentary tissue pressures.

The Linear Perfusion Models ZHL12/16 (3b)


The new System ZHL-16 (as published)

	HWZ (tH)	Letter	а	b
#	[min]	Code	[bar]	[]
1	th=4'	Α	1.2599	0.5050
2	th=8'	В	1.0000	0.6514
3	th=12.5'	С	0.8618	0.7222
4	th=18.5'	D	0.7562	0.7825
5	th=27'	Е	0.6667	0.8126
6	th=38.3	F	0.5600	0.8434
7	th=54.3'	G	0.4947	0.8693
8	th=77'	Ι	0.4500	0.8910
9	th=109'		0.4187	0.9092
10	th=146'	J	0.3798	0.9222
11	th=187'	K	0.3497	0.9319
12	th=239'	L	0.3223	0.9403
13	th=305'	М	0.2850	0.9477
14	th=390'	N	0.2737	0.9544
15	th=498'	0	0.2523	0.9602
16	th=635'	Р	0.2327	0.9653

Bühlmann Memorial Symposium 2019 Parametric NDL calculations today

Parametric NDL calculations today.... (1)

Parametric NDL calculations today.... (2)

in Abhängigkeit von der Abstiegs- u. Auftstiegsrampe, der Höhe und des Atemgasgemisches während des TG's

Physikalische Konstanten und Atemgas									
alf_N2surf	0.790	dp_H2O/dT	1.0000	bar/10m	p_H2O	0.0628	bar		
alf_N2TG	0.790	k_resp	0.8		p_CO2	0.0533	bar		

Umgebungsbedingungen								
Höhe 1 0 m ü.M. psurf_H1 1.0132 bar p_alv-N2_H1 0.7613 bar								
dt_Ramp 12	0	min	dpN2/dt_R	99999.999	bar/min			
Höhe 2	0	m ü.M.	psurf_H2	1.0132	bar	p_alv-N2_H 2	0.7613	bar
dt_Adapt 2	0	min				p_alv-N2_H 2TG	0.7613	bar

Gewebemodell (ZHL-12)	

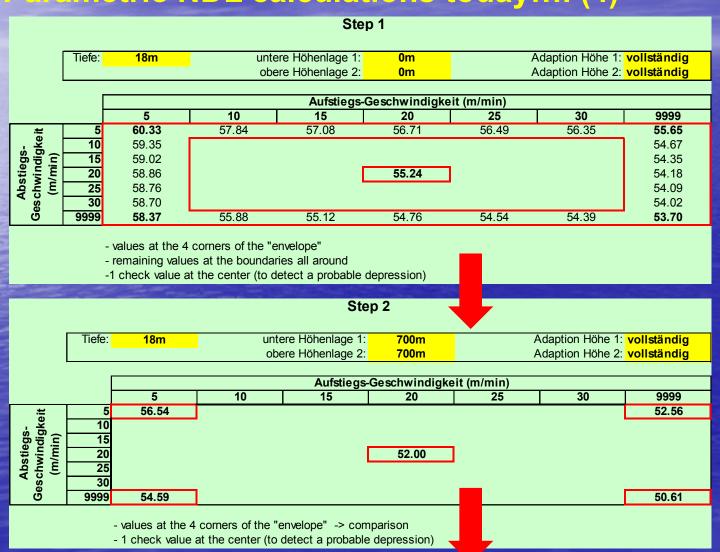
nr.	tH	а	b	k
	min	bar		1 / min
1	4.0	1.9000	0.8000	0.173287
2	8.0	1.4500	0.8000	0.086643
3	12.5	1.0300	0.8000	0.055452
4	18.5	0.8820	0.8260	0.037467
5	27.0	0.7170	0.8450	0.025672
6	38.3	0.5750	0.8600	0.018098
7	54.3	0.4680	0.8700	0.012765
8	77.0	0.4410	0.9030	0.009002
9	109.0	0.4150	0.9080	0.006359
10	146.0	0.4160	0.9390	0.004748
11	187.0	0.3690	0.9460	0.003707
12	239.0	0.3690	0.9460	0.002900
13	305.0	0.2550	0.9620	0.002273
14	390.0	0.2550	0.9620	0.001777
15	498.0	0.2550	0.9620	0.001392
16	635.0	0.2550	0.9620	0.001092

Max. Gewebewerte

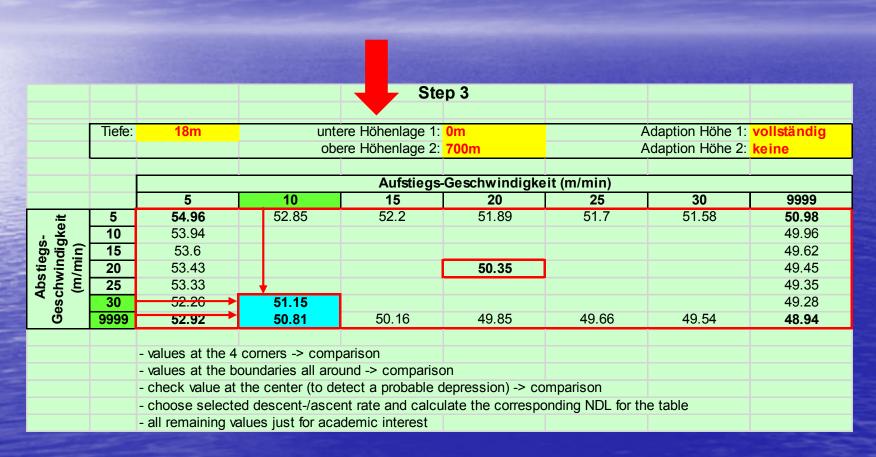
pTIGmax1	pTIGmax2
bar	bar
3.1665	3.1665
2.7165	2.7165
2.2965	2.2965
2.1086	2.1086
1.9161	1.9161
1.7531	1.7531
1.6326	1.6326
1.5630	1.5630
1.5309	1.5309
1.4950	1.4950
1.4400	1.4400
1.4400	1.4400
1.3082	1.3082
1.3082	1.3082
1.3082	1.3082
1.3082	1.3082

Parametric NDL calculations today.... (3)

Tiefe_nominell	18.0	m
ptot_Tnomin [H2]		
pN2_Tnomin [H 2]		
pO2_Tnomin [H 2]	0.5632	bar


Beachte: Tauchgang findet auf Höhe 2 statt!

Tiefe_effektiv	19.54	m
dT_surf	1.0	m
dT_rel		
ptot_Teff [H2]		
pN2_Teff [H 2]		
pO2_Teff [H 2]	0.5956	bar


	ABstieg:	dt_dsct	0.60000	min	> v_dsct	30.00000	m/min	dpN2/dt_Dsct	2.37	bar/min
	AUFstieg:	v_asct	10.000	m/min	-> dt_asct	1.80000	min	dpN2/dt_Asct	-0.79	bar/min
nr.	pTIG0_H1	pTIG0_H2	pTIG0_H2'	PTIG1	pTIG2'	NZ_tH'	pTIG2	pTIG3	pT3/pmax2	pT3/pmax2
-	bar	bar	bar	bar	bar	min	bar	bar	[H1] %	[H2] %
1	0.7613	0.7613	0.7613	0.8264	3.6843	9999.99	2.2403	2.0073	63.4	65.5
2	0.7613	0.7613	0.7613	0.7944	2.8212	9999.99	2.2221	2.1019	77.4	80.4
3	0.7613	0.7613	0.7613	0.7826	2.2782	9999.99	2.1514	2.0796	90.6	94.8
4	0.7613	0.7613	0.7613	0.7758	2.0523	55.37	2.0188	1.9785	93.8	98.4
5	0.7613	0.7613	0.7613	0.7713	1.8391	51.15	1.8376	1.8180	94.9	99.9
6	0.7613	0.7613	0.7613	0.7683	1.6666	52.65	1.6492	1.6413	93.6	99.0
7	0.7613	0.7613	0.7613	0.7663	1.5418	59.10	1.4658	1.4644	89.7	95.2
8	0.7613	0.7613	0.7613	0.7648	1.4737	73.32	1.3030	1.3047	83.5	88.6
9	0.7613	0.7613	0.7613	0.7638	1.4413	97.15	1.1687	1.1714	76.5	81.3
10	0.7613	0.7613	0.7613	0.7632	1.4081	121.42	1.0776	1.0804	72.3	76.7
11	0.7613	0.7613	0.7613	0.7628	1.3533	138.26	1.0146	1.0172	70.6	75.1
12	0.7613	0.7613	0.7613	0.7625	1.3534	176.64	0.9635	0.9658	67.1	71.3
13	0.7613	0.7613	0.7613	0.7622	1.2226	164.78	0.9222	0.9242	70.6	75.5
14	0.7613	0.7613	0.7613	0.7620	1.2227	210.70	0.8887	0.8904	68.1	72.8
15	0.7613	0.7613	0.7613	0.7619	1.2229	269.04	0.8621	0.8634	66.0	70.6
16	0.7613	0.7613	0.7613	0.7618	1.2230	343.05	0.8409	0.8420	64.4	68.8

Minimum aller NZ: 51.15 min (abgerundete) NZ: 51.00 min

Parametric NDL calculations today.... (4)

Parametric NDL calculations today.... (5)

In this particular case (18m, 0-700m a.s.l.) a NDL of 51 minutes was chosen and published.

Parameters for Bühlmann '86 Air Diving Tables and later developments

Parameters for Bühlmann `86 Air Diving Tables and later developments (1)

Table Calculation Parameters (English version)

Specifications for the Calculation of the Bühlmann `86 Air Diving Tables

Compartment model:

ZHL-12 and later ZHL-16: partially used in parallel during tests 12, resp. 16

Number of compartments

ZHL-12: 16 half times, with a total of 12 pairs of coefficients für N2 and He ZHL-16: one pair of (different) coefficients a, b for every compartment

Remark: during the high altitude tests, profiles have been calculated with both sets of coefficients. In-water, generally the longer NDL and the

shorter stop times were used.

Tolerated ambient pressure $pamb.tol(tH) = (p_TN2(tH) - a(tH)) * b(tH)$

Letter coding of RG

in alphabetical order A-P: RG at end of dive = letter code of leading compartment; in case the next following compartment was also saturated to 95% or more, then the letter code of this compartment was used.

Physical and physiological parameters

In-water pressure rise as a matter of simplicity. f H2O = 0.10 bar/m H2O was assumed (average between fresh- and saltwater)

calculated under inclusion of

-alveolar water vapor pressure (0.06028 bar),

-alveolar CO2 pressure p CO2 (0.0533 bar) and

-respiratory coefficient QR (0.80); later changed to 1.0, therefor p_CO2

drops from equation; no consequences

Tissue adaption 0-700m complete adaption and tissue saturation at 0m, NDL and stop times corre

sponding to surface pressure at 700m a.s.l. Tissue adaption 701-2500m complete adaption auf 700m a.s.l., ride for 1 hr to 2500m a.s.l., immediate

Altitude ranges

Range segmentation two ranges: 0-700m a.s.l. and 701 -2500m a.s.l. (least number of tables) Surface pressure at altitude according to ISO/IATA formula for standard atmosphere

Surface pressure at sea level standard atmosphere; p_surf-0 = 1.013bar

Composition of air:

Inspiratory O2 fraction Inspiratory N2 fraction

Dive profile for calculation:

Segmentation of last deco stop 3m divided in 2m/4m for upper altitude range table for reasons of more moderate pressure gradients

for depths down to 18m: rectangular profile; deeper depths: a fixed Descent ramp of dive

Ascent ramp of dive fixed ascent rate of 10m/min, for all depths; exact value for inert gas calculations, published value in table rounded to the next full minute

fixed 1m, variable 3%: T_{Tab} = T_{eff} x 1.03 + 1; NO margins for test dives! Safety margin for depth

Safety Stop: Safety stop

for all dives within the NDL 1'/3m (0-700m a.s.l.), resp. 1'/2m (701-2500m a.s.l.); there is no desaturation-related reason behind, but more a regula-

Ascent to next stop depth always included in the stage stop time Profile within stages rectangular profile within stages Depth of stages without additional safety margins

Specifications for the Calculation of the Bühlmann `86 Air Diving Tables

Surface Interval (SI) table:

Breathing gas

Waiting time until RG "0" time until all compartments are desaturated from maximum tolerated tissue

inert gas pressure to at least 5% above surface alveolar inert gas pressure. Fixed minimal waiting time is 2 hrs; thus, all compartments up to 20min

half time are desaturated to 97% or more.

for desaturation to RG "0": always to the next longer full hour Rounding

For switch to next lower RG: always to the next full minute

Shunt effects no effects included during the desaturation process

Residual Nitrogen Time (RNT) table:

Residual Nitrogen Time

for reasons of simplicity in handling just one table, valid for the whole

range up to 2500m a.s.l. based on a comparative analysis of the states of compartments at the end

of all dive profiles contained in the table. always to the next full minute

Waiting Times for Flying after Diving in pressurized Aircraft:

Waiting time until flying calculation under the assumption of a timeless ascent (rectangular profile), not taking in account for the ongoing desaturation during the ascent

ramp to cruising altitude.

Fixed minimal waiting time is 2 hrs; thus, all compartments up to 20min

half time are desaturated to 97% or more.

Assumed cabin pressure 0.58bar (approx. 4600m a.s.l.); value slightly below the lowest acceptable cabin pressure not yet classified as a technical failure (IATA). Normal are

pressures are between 0.75-0.8bar (approx. 2000m-2400m a.s.l. at a

cruising altitude of 35'000 to 39'000ft)

Remarks: latest generation aircrafts (Boeing Dreamliner) use a minimal

cabin pressure at cruising altitude corresponding approx. to 1800m a.s.l

always to the next longer full hour

Crossing a Pass and Flying after Diving in non-pressurized aircraft:

Waiting time minimum 1 hr at diving altitude before any further ascent, afterwards a

steady ascent to target altitude, arrival not before indicated waiting time. Surface ambient pressures calculated according to ISO/IATA standard atmosphere: for the highest

indicated altitude (4000m/0.615bar), the same waiting time was taken as for flying in a pressurized cabin (4600m/0.58bar).

always to the next longer half hour

Table for Lake Titicaca (3800m a.s.l.):

Basis (and specifications) This table was a "customized" version for the diving expedition of a scien-

tific diving detachment of the British Rhine Army. Full adaption of all tissues to lake altitude assumed.

Upper operation limit 4500m a.s.l. (calculation altitude)

Remaining parameters

identical to those of lower altitude range tables

Rounding: Calculated NDL

Rounding

Calculated stop times

generally rounded to the next lower minute generally rounded to the next higher minute

(under usage of CS [common sense])

Ascent times to 1st deco stop

published values on table always rounded to the next full minute (reasons

of practicability): exact value for inert gas tissue loading calculations

Parameters for Bühlmann '86 Air Diving Tables and later developments (2)

Table Calculation Parameters (German version)

Tabellen-Berechnungsparameter zu den Bühlmann `86 Tauchtabellen

ZHL-12, später ZHL-16; z.T. beide parallel während den Tests eingesetzt

Anzahl Kompartimente Koeffizientensätze

ZHL-12:16 Halbwertszeiten, mit insgesamt 12 Koeffizientenpaaren für N2

ZHL-16: je ein Satz Koeffizienten a, b pro Halbwertszeit

Anmerkung: bei Höhentauchversuchen wurden die Profile jeweils mit beiden Koeffizientensätzen gerechnet und die jeweils längeren Nullzeiten.

resp. kürzeren Stoppzeiten getaucht.

 $pamb.tol(tH) = (p_TN2(tH) - a(tH)) * b(tH)$ Tolerierter Umgebungsdruck Buchstaben-Codierung

alphabetisch A-P; RG am Ende des TG = Code des führenden Kompartimentes: falls nächstfolgendes Kompartiment ebenfalls zu 95% oder mehr

aufgesättigt war, so wurde dessen Buchstabe verwendet.

Physikalische und physiologische Parameter

Drucksteigerungsfaktor H2O der Einfachheit halber wurde f H2O = 0.10 bar/m H2O angenommen (Mittelwert zw. Süss- und Salzwasser)

Alveolärer p_N2alv gerechnet mit Berücksichtigung von

-Wasserdampfdruck (0.06028 bar), -alveolärer p CO2 (0.0533 bar) und

-Respirations-Koeffizient (0.80): später 1.0 verwendet, damit fällt p. CO2 aus der Gleichung weg; hat allerdings keine Auswirkungen

vollständige Adaption auf Om, Sättigung auf dieser Höhe, NZ und Dekozei-

ten entsprechend Oberflächendruck auf 700m

Vorsättigung 701-2500m vollständige Adaption auf 700m, Fahrt 1 Std. auf 2500m, sofortiger TG

Höhenlagen:

Vorsättigung 0-700m

in 0-700m und 701 -2500m (möglichst geringe Anzahl Tabellen) Oherflächendruck ieweils mit ISO/IATA Formel gerechnet (Standardatmosphäre) Standardatmosphäre: p_surf-0 = 1.013bar Druck auf Meereshöhe

Inspiratorischer O2-Anteil

Inspiratorischer N2-Anteil

Tauchprofil zur Berechnung:

Tiefeninkremente 3m wie international üblich (10ft)

Aufteilung letzte Dekostufe TG-Abstiegsrampe

3m aufgeteilt in 2m/4m für Höhentabelle für kleinere Druck-Gradienten bei Tiefen bis 18m: Rechteckprofil; übrige Tiefen fix 30m/min

fix 10m/min, alle Tiefen; exakter Wert für Inertgasberechnung; publizier ter Tabellenwert immer auf nächste ganze Minute gerundet Alle Rampen mit der exakten Lösung der Differentialgleichung gerechnet fix 1m, variabel 3%: Trab = Tatt x 1 03 + 1: für Test-TG: KEINE Zuschläge!

TG-Rampenberechnung Tiefenzuschlag

Sicherheitshalt Sicherheitshalt

bei allen NZ-TG von 1'/3m (0-700m ü.M.), resp. 1'/2m (701-2500m ü.M.); keinerlei entsättigungsbasierte Überlegung, sondern eher ord nungspolitischer Natur

Aufstieg zur nächsten Stufe Profil innerhalb Stufen Stufentiefen

ist immer in Stufenzeit enthalten Rechteckprofil innerhalb Stufen ohne Tiefen-Zuschläge

Tabellen-Berechnungsparameter zu den Bühlmann `86 Tauchtabellen

Oberflächenintervall-Tabelle

ausschliesslich Luft

Wartezeit bis "0" Zeit bis alle Kompartimente vom max. tolerierten Inertgasdruck bis mindestens 5% über den alveolären Inertgasdruck an der Oberfläche entsättigt sind.

Minimum Wartezeit aber 2 Std. fix; damit sind alle Kompartimente bis

20min HWZ zu mind. 97% entsättigt

für Entsättigung zu RG "O": immer auf nächste ganze Stunde Rundung für Wechsel in die nächst tiefere RG: immer auf ganze nächste Minute

es wurden keine Shunt-Effekte während der Entsättigung berücksichtigt

Zeitzuschlagtabelle: Zeitzuschlagtabelle

aus Gründen der einfachen Handhabung eine einzige Tabelle, gültig für

gesamte Höhenlage bis 2500m ü.M.

erfolgte aus der vergleichenden Analyse der Kompartimentszustände am Ende sämtlicher in der Tabelle enthaltenen Tauchgangprofile

Rundung immer auf nächste ganze Minute

Wartezeiten bis Fliegen MIT Druckkabine:

Wartezeit bis Flug Berechnung erfolgt auf Basis eines zeitlosen Aufstiegs (Rechteckprofil).

d.h. ohne Berücksichtigung der laufenden Entsättigung während der Rampe

bis zum Erreichen der Flughöhe

Minimum Wartezeit aber 2 Std. fix: damit sind alle Kompartimente bis

20min HWZ zu mind. 97% entsättigt

Annahme Kabinendruck 0.58bar (ca. 4600m); liegt ganz wenig unter dem tiefst möglichen Druck gem, IATA, der noch nicht als technischer Defekt gilt (0,60bar), Normal

sind ca. 0.75-0.8bar (ca. 2000-2400m auf Flughöhe 35'000 bis 39'000ft) Anmerkung: bei Flugzeugen neuster Generation (Boeing Dreamliner) ver sucht man den minimalen Kabinendruck auf Reiseflughöhe entsprechend

ca. 1800m ü.M. einzuhalten. immer auf nächste ganze Stunde

Rundung

Passfahrten und Fliegen OHNE Druckkabine

mind, 1 Std. auf bisheriger Höhe vor Aufstieg, anschliessend gleichmässi Wartezeit ger Aufstieg; Ankunft nicht vor Ablauf angegebene Wartezeit

wurden exakt nach ISO Standardatmosphäre gerechnet; für die grösste Oberflächendrücke

angegebene Höhe (4000m/0.615bar) wurde dieselbe Wartezeit angege

hen wie für den Flug mit Druckkahine (4600m/0 58har)

immer auf nächste halbe Stunde Rundung

Tabelle Titicacasee (3800m ü.M.):

Grundlagen Diese Tabelle war eine "Einzelanfertigung" für die Expedition der brit.

Rheinarmee; es wurde eine vollständige Adaption am Tauchort vorausge

Obere Einsatzgrenze 4500m ü.M. (Berechnungshöhe) Übrige Parameter alle übrigen wie die "normalen" Tabellen

Rundungen:

Erhaltene Stoppzeiter

in der Regel auf nächst ganze Minute abgerundet in der Regel auf nächst ganze Minute aufgerundet

(unter Anwendung GMV [gesunder Menschenverstand]) Zeiten TG-Aufstiegsrampe

publizierte Werte auf Tabelle immer auf ganze nächste Minute aufgerun-

det (Praktikabilität); für Inertgasberechnung aber exakter Wert verwendet

Results and consequences (details)

Results and Consequences (1)

3.1 retrospective studies

type of dive	number of test series	number of test persons
simulated air dives:	21	457
- single dives, 30-44m	31	457
- repetitive dives - altitude decompression after	9	166
a dive	14	190
simulated dives on Heliox, 02		1
- single dives, 30-35m	11	159
- deep diving, 80-575m - altitude decompression after	24	193
a dive	1	15

3.2 prospective studies

During 1986 - 1988, 498 real open water dives at altitudes from 1400 - 3800m and depths from 12 - 60m have been carried out analysed.

3.3 repetitive-dive trials

- 127 divers, 127 second dives, 39 third dives depth range: 32-44m, bottom times: 13'-60', surface intervals: 10'-120'

3.4 open water high altitude tests

- Lake Titicaca, Peru, 1987 / 3800m 17 divers, 3 weeks, 290 dives, 12-39m (no symp.)
- Muttsee, Switzerland, 1988 / 2500m 15 divers, 2 days, 56 dives, 24 - 52m (2 mild skin bends, 2 muscles)
- Mount Kenia Massiv, 1988, 4400-4780m 18 dives (no symptoms)
- High altitude trials in the St.Gotthard region, 1984-1988, 2134m 40-50 diver, approx. 60 dives (no symptoms)
- 3.5 some other relevant data ...
 - highest altitude in chamber: 4200m
 - used breathing gases: air, nitrox, heliox, oxygen-decompression
 - deepest dive : 575m for 2 hrs, 1981
 - saturation diving: depth range from 30 220m

3.6 practical applications (ref. also to Part II / 7.)

- construction subway Muenich, 1983-85 1.6-2.1 bar, 6-8 hrs/day, 5days/week; bends rate 6/850 "dives" (down from 48/1377 while using German Tables from the Ministry of Health&Labour)
- railway construction work near Bern by Swiss Federal Railway Comp. 1988-91 1.2-1.6 bar for 4-6 hrs a day
- dive tables in use in England, Germany, Switzerland, Austria, Peruvian-and Bolivian Navy (appr. 40-50'000 divers overall since 1986)
- several dive computers (since 1984/85)

Results and Consequences (2)

3.7 Selected Trials: High Altitude Tests St.Gotthard, 1986 (Lago di Lucendro)

altitude : 2134m above sea level adaption time: 4 hrs

first dive

team # 3 div.		bott. time [min]		T86		effective deco-time
each		[mrn]	Oin 41	m 2m	LOT.	2m
1	33	18		2 5	7	1
2				1 6	10	1
2	36	16	'	4 6		4
3	37	15	/	4 6	10	2
4	32	15		- 3	3	1

second dive; surface interval: 0 minutes

team # 3 div. each		bott. time [min]			T86		effective deco-time 2m
======	+====+	=====+	===+	===	+===	-====	++=======
4	32	15	1	4	9	14	1

3.8 Selected Trials: High Altitude Tests Muttsee (1988)

altitude : 2500m above sea level adaption time: 2 hrs first dive

profile	method	decompression 9m 6m 4m 2m to								
		9m	6m	4m	2m	total				
20 / 101	effective			2	3	5				
39m / 18'	acc. T86		2	3	7	12				
45m / 18'	effective acc. T86		2	3	4	9				
*3m / 10	acc. T86	2	3	4	11	20				
	effective	4	3	4	8	19				
50m / 15'	acc. T86	5	5	8	18	36				

3.8 Selected Trials: Comparison of Open Water Tests at low altitudes (Lake of Zuerich)

altitude: 400m above sea level

T86 : Buehlmann table '86, 0-700m

	depth [m]	bottom time [min]	dec	ompi stac			asct time	Sympt./ dives
T86 experiment	30 32	17 20		-===+	-===	1 -	4 3	0/15
T86 experiment	33 35	14 18				1 -	4 3	0/12
T86 experiment	39 41	10 13				1 -	5 4	0/12
T86 experiment	39 41	20 23			3	7 5	13 11	0/16
T86 experiment	39 41	30 33		3	7 5	18 15	31 26	0/16
T86 experiment	39 41	40 40	2 2	6 5	15 13	29 27	55 50	0/24
T86 experiment experiment	42 44 44	36 35 37	2 2 3	7 5 5	15 11 12	32 26 28	59 47 51	0/20

(courtesy Prof. Buehlmann)

unknown no. of 14 divers, 123 dives, 30-44m, BT=10-40min

Results and Consequences (3)

```
3. MUTTSEE - VERSUCHS - TG
```

a) Uebersichtszahlen

An	z. TG:	ZHL-12: 41 ZHL-16: 11	Tiefen:	min.: max.:	 Zeiten:	min.: max.:	
		TOTAL • 52					

Anz. versch. Profile :	ZHL-12: ZHL-16:		ErstTG:	ZHL-12: ZHL-16:		Rep.TG:	ZHL-12: ZHL-16:		
	 TOTAL :	14		TOTAL :	28		TOTAL :	24	

Geschlecht	Anz.		Rep.TG	Tota	1
Maenner	11	22	19	41	
Frauen	3	† 6 *******	5 ******	† 11 *****	**
* Total	14 *****	¦ 28	24	* 52 *****	*

b) Nullzeitenvergleiche

Tiefe [m]	T86/2500	ZHL-12 *) (6 Std.)	ZHL-16 *) (6 Std.)
30	15'	20.4'	18.5
33	12'	17.3'	15.2
36	10'	15.0'	12.9
39	9'	13.3'	11.2
42	8'	11.8'	9.9

*) 3' Abstieg einberechnet

Results and Consequences (4)

Hoehe: 2500m

c) Vergleiche von ERST-TG

Profil !	Methode		Deko	ompres	ssion	
		9m	6m	4m	2m	Total
	effektiv			2	3	5
39m / 18'	nach T86		2	3	7	12
45 (101	effektiv		2	3	4	9
45m / 18'	nach T86	2	3	4	11	20
	effektiv	4	3	4	8	19
60m / 15'	nach T86	5	5	8	18	36

d) Vergleiche von REPETIV-TG

1. TG	Int.	2. TG	М	12m	Deko 9m	ompres 6m	4m	2 m	Tot.
======	-====- 	+====== 60m	+===+ E		1	2	3	4	10
60m/15'	180'	8'+ 15'	T86	2	4	3	6	14	29
	1	60m	E		4	3	4	8	19
57m/12'	210'	11' + 4'	T86	4	4	4	9	19	40
		42m	E				3	4	7
45m/18'	277'	13' + 6'	T86		1	3	3	10	17

Results and Consequences (5)

3. MUTTSEE - VERSUCHS - TG

e) PROBLEMKOMBINATION

Anmerkung: effektive Dekompressionsplaene berechnet mit Koeffizienten ZHL-16/A

200-10

ERST-TAUCHGANG:

Profil	Meth.	9m						sion 2m		Tot.	HWZ	DCS n/d
39m/25'	eff.	+==== 	+==	3	+=	5	+	7	+		18.5,	0/6
(AZ=3')	T86	3	1	3	-+-	7	+	16	+-+		38.3	

No DCS for this depth/time combination

Int.	Profil	Meth.	9m	1	De 6m		ompi 4m				rot.	HWZ	DCS n/d
99'	+======	eff.	+==	=+		-	3		5	1	8		1/2
		T86	3		6	1	12	1	23	1	44		
103'	alle	eff.	-			1	3	1	5	-	8		1/1
	33m/25'	T86	3		6	1	12	1	20	1	41		
117'	(AZ=3')	eff.	-			1	3	1	5	1	8		2/2
		T86	3		6	1	12	1	20	1	41		

Here, it looks differently.... Reason: most probably the shunt effects with delayed desaturation!

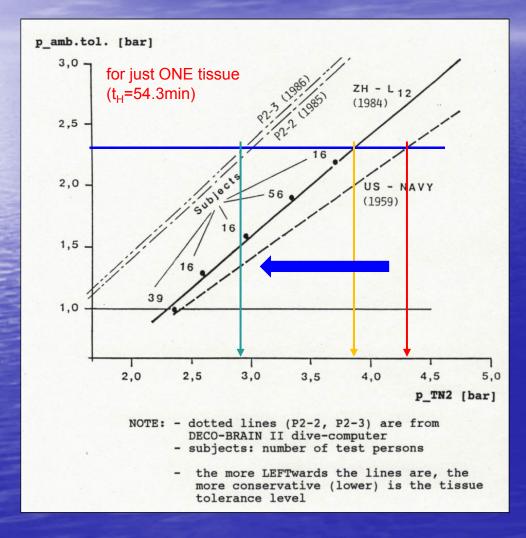
Results and Consequences (6)

3. MUTTSEE - VERSUCHS - TG

f) Fuehrende Kompartimente b. Ausstieg (nur Erst-TG)

Hoehe : 2500m

Umgebungsdruck: p_amb. = 0.741 bar (ISO)


alv. N2-Druck : p_alv.N2 = 0.537 bar

Anmerkung: Es wurden nur diejenigen Faelle beruecksichtigt, bei denen der Inertgas-Kompartimentsdruck beim Ausstieg mind. 95% des maximal zulaessigen Wertes (s. unten) betrug.

			##-16 max. p_tN2 [bar]	fuehrend bei folgenden TG	System ZHL-12 /T86 Anzahl	System ZHL-16 / A * Anzahl	Total
#3	12.5	1.957	1.888	#1,2,3,4, 5,6,7,8, 9,10	20	0	20
#4	18.5	1.779	1.703	#1,2,3,5,6 7,8,9,10, 12,13,14*	19	6	25
#5	#5 27.0 1.594 1.579		1.579	#3,5,6,7, 8,9,10,11 12,13,14*	16	6	22
#6	38.3	1.437	1.438	#7,8,9,11, 12,13,14*	8	6	14
#7	54.3	1.320	1.347	#11	2	0	2

"problematic" tissues (skin, muscles)

Results and Consequences (7)

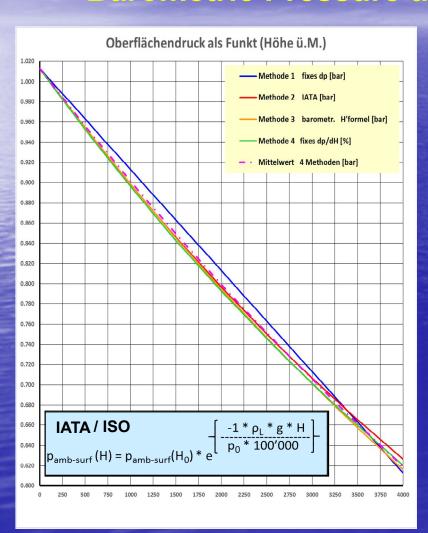
Careful analysis of hundred of dive profiles executed with dive computers led to a refinement of the underlying set of coefficients towards higher tolerated ambient pressures (reduced gradients) for a given tissue inert gas pressure.

It also shows the dramatic change compared to US-Navy and the original ZHL-12 limits.

Different Versions of the Bühlmann Compartment Model

Several versions of the Bühlmann algorithm have been developed, both by Bühlmann and by later workers. The naming convention used to identify the algorithms is a code starting ZH-L, from Zürich (ZH), linear (L) followed by the number of tissue compartments or pairs of coefficients, and other unique identifiers.

The term "linear" say that there is a linear functionality between the tissue inert gas pressure and the tolerated ambient pressure (the coefficients a, b describe a this linearity).


- ZHL-16 or ZH-L16A: The original 16 compartment algorithm (no conservatism at all).
- ZHL-16B: The 16 compartment algorithm modified for dive table production, using slightly more conservative "a" values, mainly in the middle compartments.[8] Recently used in dive computers with high performance processor units, is it more flexible (especially in tech dives) compared to the ZHL16C
- ZHL-16C:The 16 compartment algorithm with further modification to the middle and faster "a" values, intended for use in dive computers as a "package". It can be used with almost all low-level processor units but it is less flexible compared to the ZHL16B.
- ZHL-8: A version using a reduced number of tissue compartments to reduce the computational load for personal dive computers.
- ZHL-8 ADT: 8-compartment adaptive model used by Uwatec. This model may reduce the no-stop limit or require the
 diver to complete a compensatory decompression stop after an ascent rate violation, high work level during the dive, or
 low water temperature. This algorithm is used in computers which can accurately monitor air consumption and
 instantaneous rate of air consumption to model work load (exertion) via changes in the rate of gas consumption, which
 allows plausible modelling of additional decompression obligation based on exertion at depth. It also monitors ambient
 temperature and selects the choice of risk tissue accordingly. This results in earlier and longer decompression
 requirements in colder water.[9][10]
- ZHL-8 ADT MB: A version of the ZHL-8 ADT claimed to suppress microbubble formation.[9]
- ZHL–8 ADT MB PDIS: Profile-Determined Intermediate Stops.[11]
- ZHL-8 ADT MB PMG: Predictive Multi-Gas.
- ZHL-16 ADT DD: 16-compartment adaptive model used by Uwatec for their trimix-enabled computers. Modified in the
 middle compartments from the original ZHL-C, is adaptive to diver workload and includes Profile-Determined
 Intermediate Stops. Profile modification is by means of "MB Levels" rather than gradient factors[12]

Source: Wikipedia

ZHL-12 original 16 tissue compartment model, but with just 12 pairs of coefficients

Bühlmann Memorial Symposium 2019 **Barometric Pressure as** a function of Altitude

Barometric Pressure as a function of Altitude

There are various methods (formulas) how to calculate the surface ambient pressure as a function of the altitude.

In aviation, the ambient pressure is a most critical value to calibrate altimeters.

Ambient pressure sea level = 1.013 bar.

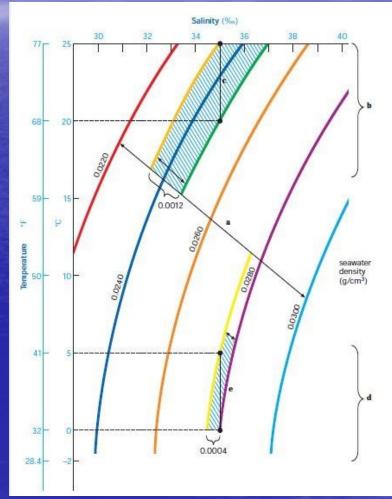
For diver, the following assumption is fair enough:

- a) ambient pressure at sea level = 1.00 bar
- b) decrease of ambient pressure = 0.1 bar / 1000m altitude a.s.l, linear

Up to 4000m a.s.l., the error is neglectable. The biggest deviation occurs at approximatly 1800-2000m a.s.l. and is around 200m (0.02 bar).

For the calculation of the table, the ISO IATA formula was used.

Seawater Density as Function of Temperature


and Sality

 The density of seawater is determined by temperature, pressure, and salinity.

•In the open ocean, the density of surface seawater varies between 1.022 and 1.03 grams per cubic centimeter (g/cm) (a).

•In tropical and subtropical regions (b) a 9°F (5°C) temperature difference (c) produces a density change of 0.0012 grams per cubic centimeter in seawater.

- In polar regions (d) a 9°F (5°C) temperature difference (e) produces a density change of only 0.0004 grams per cubic centimeter.
- •In tropical and subtropical surface waters, temperature change has a greater influence on density, whereas in polar and cold temperate waters, salinity variation is of greater significance.
- •In the open ocean, the relative densities of water bodies are of great importance. Relative density determines which will rise and which will fall. These vertical movements in turn influence biological productivity and generate vertical and horizontal currents.

Source: Marine Science; The Diagram Group

Deco Brain Trials(0a)

EUROPÄISCHE PATENTSCHRIFT

- (45) Veröffentlichungstag der Patentschrift: 05.11.86
- Anmeldenummer: 82107904.3
 Anmeldetag: 27.08.82
- Anzeigeeinrichtung für die Parameter eines Tauchganges.
- 30 Priorität: 27.08.81 CH 5530/81
- Veröffentlichungstag der Anmeldung: 09.03.83 Patentblatt 83/10
- (45) Bekanntmachung des Hinweises auf die Patenterteilun 05.11.86 Patentblatt 86/45
- 84 Benannte Vertragsstaaten: AT BE DE FR GB IT LU NL SE
- © Entgegenhaltungen CH-A-437 021 FR-A-2 349 128 FR-A-2 345 150 FR-A-2 445 266 FR-A-2 454 655 GB-A-1 461 277

(3) Patentinhaber: Divetronic AG, Rennhofstrasse 546, FL- 9493 Mauren (LI)

(5) Int. CL.4: B 63 C 11/32, G 06 F 15/20

- (72) Erfinder: Hermann, Jürgen, Rennhof, FL- 9493 Mauren (LI) Erfinder: Vogler, Roland, Ahornstrasse 35a, CH-9013 St. Gallen (CH)
- Vertreter: Flach, Dieter Rolf Paul, Dipl.- Phys., Patentanwälte Andrae/Flach/Haug/Kneissl Prinzregentenstrasse 24, D-8200 Rosenheim (DE)

Armarkung, Insenbalt von neun Mosten nach der Bekenntmachung des Hinwisse auf die Erstung des europlischen Patents in Europäischen Perstentiat nach jedemann beim Europäischem Prestentari gegen des estaties unsenglischen Perstentari gegen des estaties unsenglischen Perstentari gegen des estaties unsenglischen Perstentaries gegen des estaties unsenglischen Perstentaries gegen des estaties unsenglischen Perstentaries (Europäischen Perstentaries) erzeit des die gegen des estaties unsenglischen Perstentaries (Europäischen Perstentaries) erzeit des die gegen des estaties unsenglischen Perstentaries (Europäischen Perstentaries) erzeit der gegen des estaties und des gegen des estaties und erzeit gegen des estaties und erzeit gegen des estaties und des gegen des estaties und des gegen des estaties und des gegen des estaties und erzeit gegen des estaties und des gegen des estaties und gegen des estaties und erzeit gegen des estaties und erzeit gegen des estaties und gegen des estaties des estaties und gegen des estaties und gegen des estat

LIBER, STOCKHOLM 1986

0 073 499

Patentansprüche

 Anzeigeeinrichtung f
ür die Parameter eines Tauchganges, wie z. B. aktuelle Tiefe, maximal getauchte tiefe, bisherige Tauchzeit oder dergleichen, die
über

a) wenigstens einen Speicher für die Dekompressionsparameter bei einer Reihe von Tauchtiefen und -zeiten, und

b) eine Auswerte- und Verknüpfungsstufe für die gemessenen Werte des Tiefen- und des Zeitmessers mit den im Speicher gespeicherten Werten angesteuert ist,

dadurch gekennzeichnet, dass in jedem Zeitpunkt des Tauchganges die in Abhängigkeit von den durchtauchten Tiefen und Zeiten erforderliche Gesamtauftauchzeit inklusive der vorgeschriebenen Dekompressionshalte anzeigbar ist und/oder eine Wandlereinrichtung (5) für die Umwandlung der jeweils aktuellen Grundzeit (Verweilzeit in der jeweiligen Tauchtiefenstufe) beim Eintritt in eine neue Tauchtiefenstufe in die dieser neuen Tauchtiefenstufe äquivalente Grundzeit vorgesehen ist, die jener Zeit entspricht, während welcher der Taucher sich in der maximalen Tiefe seines Tauchprofiles befunden hätte.

 2. Einrichtung nach Anspruch 1, dadurch gekennzeichnet, dass mit Hilfe der Wandlereinrichtung (5) auch der, vorzugweise jeweils mit Hilfe eines Messgerätes (6) gemessene, Luftdruck berücksichtigbar ist.

3. Einrichtung nach Anspruch 2, dadurch gekennzeichnet, dass ein einziger, vorzugsweise eine piezoresistive Messzelle aufweisender, Drucknesser (B) sowohl für den Luft- wie für den Wasserdruck mit der die Wandlereinrichtung (5) enthaltenden Schaltung verbunden ist.

4. Einrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Messbereich des Druckmessers (6) jeweils für Luft- bzw. für Wasserdruckmessung mit Hilfe einer Schalteinrichtung (34) umschaltbar ist.

5. Einrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass an den Ausgang des Druckmessers (6) eine Differenzierstufe (26) angeschlossen ist.

6. Einrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass die Schalteinrichtung (34) ein

5 Sprungerkennungsstufe (35) für den Druck umfasst, die beispielsweise von der ist.

 Einrichtung nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass

7. Einrichtung nach Anspruch 4, 5 oder 6, dadurch gekennzeichnet, dass Verknüpfungsstufe begrenzten Arbeitsbereiches - mit Hilfe der der Schalteinrider Verstärkung oder des Bit-Bereiches eines der Auswerte- und Verknüpfungs Digital-Wandlers (122) eine Bereichsumschaltung durchführbar ist.

 Einrichtung nach Anspruch 7, dadurch gekennzeichnet, dass eine du umschaltbare Referenzspannungsquelle (24, 24', 24') vorgesehen ist, der zw. Wandler (22) nachgeschaltet ist.

Einrichtung nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet,
 zumindest einen FET-Schalter aufweist.

Einrichtung nach Anspruch 9, dadurch gekennzeichnet, dass dem Figegenüber dem Eingang der nachgeschalteten Stufe, insbesondere des Ansimpedanzwandler (40) nachgeschaltet ist.

In: Einrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeich Abnormfunktion durch eine aus einem Zeitgeber und aus einem Druz Detektorschaltung ein Warnsignal (12) und/oder eine Schleppwertanzeige (1 Tauchtiefe einschalttbar ist (sind).

12. Einrichtung nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, einen Rechner (27) und Speicher für Grundzeiten und/oder Dekompressionszei

 Einrichtung nach Anspruch 12, dadurch gekennzeichnet, dass Tabellenspeicher (28) ist (sind).

14. Einrichtung nach einem der Ansprüche 1 bis 13 dadurch gekennzeichnet, deine Speicherschaltung für die jeweils durchtauchten Tiefen und Zeiten, sowergebenden Korrekturwerte aufweist.

15. Einrichtung nach einem der Ansprüche 1 bis 14, mit wenigstens ei gekennzeichnet, dass die Segmentanzeige (16a) wechselweise - z.B. v. Abnormfunktion - zur Anzeige verschiedener Angaben umschaltbar ist.

Einrichtung nach einem der vorhergehenden Ansprüche, dadurch geke
 Multivibratorschaltung zur getakteten Ansteuerung wenigstens einer Anzeige (1

Claims

Device for indicating the parameters of a dive, such as, for example, present or previous elapsed diving time or the like, which indicating device is driven throug a) at least one memory for the decompression parameters at a series of diving b) an evaluation and logic stage for the measured values of the depth gat

5 stored in the memory,

0 073 499

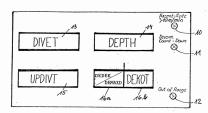
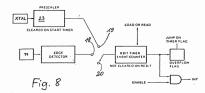
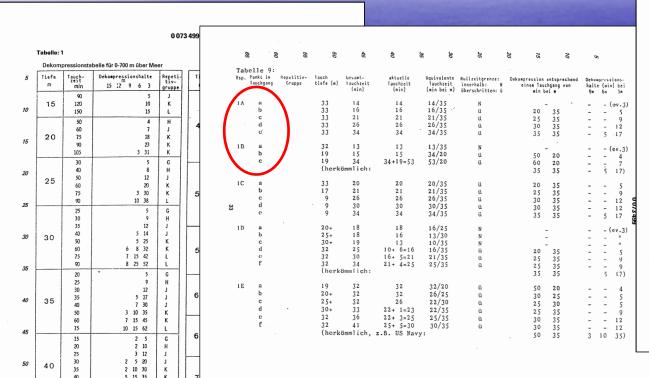




Fig. 7

35

Deco Brain Trials(0b)

2 3 10 15 20 50

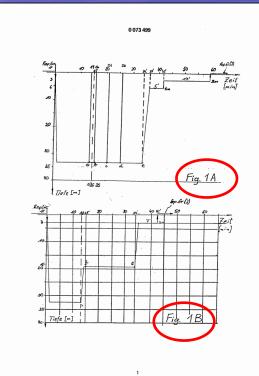
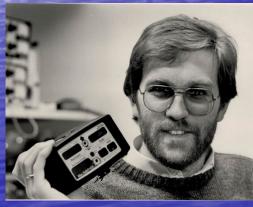


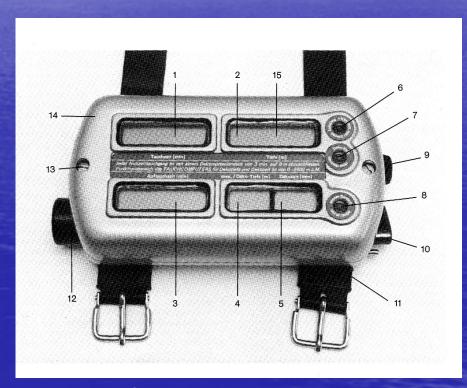
Tabelle: 2

60		Nullzeittauchgrenzen										
	m	9	12	15	18	20	25	30	35	40		
	min		200	75	50	30	25	20	15	10		
65												


2 7 20 40

Program P1 (just reading out stored table values; no real saturation- / desaturation calculation)

Deco Brain Trials(1a)



Prof. Dr. H. Hass († 16. June 2013)

Jürgen Hermann as young engineer († 2014)

The very first version; casing in aluminum

Deco Brain Trials(1b)

advertising, technical specifications

complete set as sold

From program P2 on real saturation- / desaturation calculation, based on ZHL-12 (P2-1) and ZHL-16 (P2-2 and P2-3).

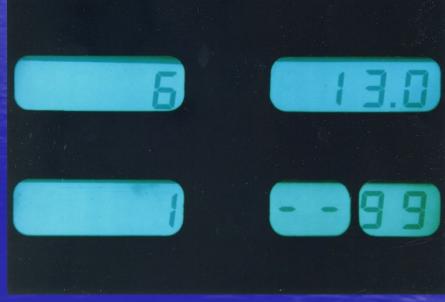
Deco Brain Trials(2a)

approx. 1985-87; Pgm-versions:

P1: reading stored table values only

P2-2: real calculation with ZHL-16

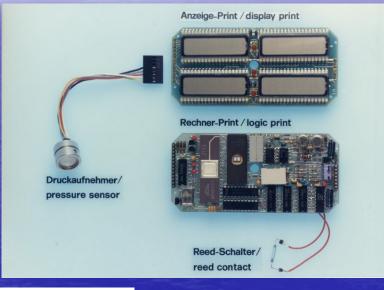
P2-3: similar; more conservative

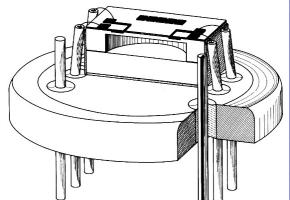


manual simulator

Deco Brain Trials(2b)

version with backplate illumination/ switch with inside reed contact for backplate illumination

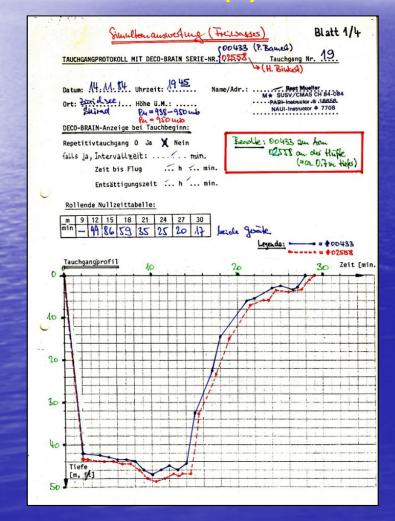

backplate illumination in the dark

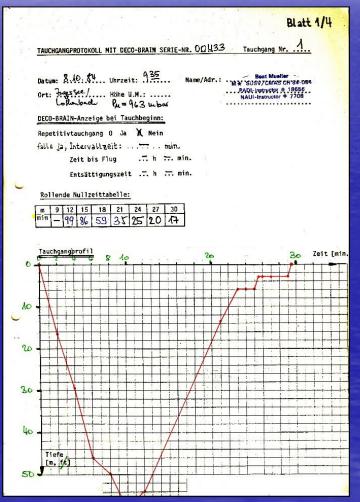

Deco Brain Trials(3)

side length approx. 4-5mm)

vacuum under mebrane

display test rig


Deco Brain Trials(4)



Deco Brain Trials(5)

Deco Brain Trials(6)

30	Der Tauchlehrer 5/1986
90	

	Tiefe	Abstieg	Grundzeit	Aufstieg		Stu	fen	min	Gesamt	Symptome
	m	min	min	1. Stufe min	m 12	9	6	3	111111	on and other beautiful design and the best owner.
AA-13 Rpt.	41	2	11	_	-	_	_	_	3.9	0/12
Deco-Brain	41	2	11	3.8	-	_	_	1	4.8	
Intervall	0		120							
2. Tauchgang	41	2	58	2.7	8	15	27	51	103.7	1/12 Haut
Deco-Brain	41	2	58	2.7	12	18	32	57	121.7	
AA-18 Rpt.	35	2	16	_	_	_	_	_	3.3	0/12
Deco-Brain	35	2	16	3.3	_	_	_	2	5.3	
Intervall	0		30							
2. Tauchgang	35	2	20	3.0	_	-	-	13	16.0	2/12 Haut
Deco-Brain	35	2	20	2.9	-	-	1	21	24.9	contents on Aust Esperall
AA-20 Rpt.	32	2	18	_	_	_	-	_	3.0	0/12
Deco-Brain	32	2	18	2.9	-	_	-	1	3.9	
Intervall	0		10							
2. Tauchgang	32	2	22	2.4	_	_	2	17	21.4	0/15
Deco-Brain	32	2	22	2.4	_	_	2	25	29.4	
Intervall	0		20							
3. Tauchgang	32	2	13	2.7	-	-	-	15	17.7	2/15 Haut
Deco-Brain	32 "	2	13	2.7	172	-	-	18	20.7	athan i sayer drahab Sandrah
AA-35 Rpt.	44	3	32	3.0	2	5	11	26	47.0	0/20
Deco-Brain	44	3	32	3.0	2	5	16	30	56.0	
Intervall	0		90						4 (46.1.199)	Delivery of the second
2. Tauchgang	38	3	23	3.0	-	-	3	15	21.0	0/20
Deco-Brain	38	3	23	3.0	-	-	3	23	29.0	
Intervall	0		90							
3. Tauchgang	41	3	22	3.3	-	-	4	19	26.3	0/20
Deco-Brain	41	3	22	3.3	-	1	4	29	37.3	
AA-40 Rpt.	41	3	37	2.7	2	5	13	27		0/24 * 12 Vp. kontinuierlich 42.7 mir
Deco-Brain	41	3	37	2.7	1	6	15	31	54.7	
Intervall	0		120							
2. Tauchgang	41	3	30	2.7	2	4	6	27		1/24 Muskulatur
Deco-Brain	41	3	30	2.7	2	4	13	38	59.7	

Tabelle 1: Wiederholungstauchgänge. Vergleich der im Experiment durchgeführten Dekompressionen mit den Angaben des Deco-Brain (Programm P2-2)

	Tiefe	Abstieg	Grundzeit	Aufstieg 1. Stufe	m		Stufe	n	min	Gesamt	
	m	min	min	min	15	12	9	6	3	11111	
AA-13 Rpt.	41	2	11	_		_	_	_	-	3.9	Self Marie
Deco-Brain	41	2	11	3.8	-	-	_	-	1	4.8	
ZH-83	41	2	11	3.6	_	_	_	2	4	9.6	Tab. 42 m 15 min
Intervall	0		120								
2. Tauchgang	41	2	58	2.7	_	8	15	27	51	103.7	
Deco-Brain	41	2	58	2.7	-	12	18	32	57	121.7	
ZH-83	41	2	58	2.7	7	13	22	31	51	126.7	Tab. 42 m 70 mir
AA-40 Rpt.	41	3	37	2.7	_	2	5	13	27	49.7	
Deco-Brain	41	3	37	2.7	_	1	6	15	31	54.7	
ZH-83	41	3	37	2.6	1	3	8	16	31	61.6	Tab. 42 m 40 mir
Intervall	0		120								
2. Tauchgang	41	3	30	2.7	-	2	4	6	27	41.7	
Deco-Brain	41	3	30	2.7	-	2	4	13	38	59.7	
ZH-83	41	3	30	2.6	1	3	8	16	31	61.6	Tab. 42 m 40 mir

Tabelle 2: Wiederholungstauchgänge. Vergleich der real durchgeführten Dekompressionen mit den Angaben des Deco-Brain und der Tabelle ZH-83 für 0 bis 700 Meter über dem Meeresspiegel

from:

Bühlmann Albert A (1986)
Dekompressionstabellen –
Dekompressionscomputer, VDTL, Der
Tauchlehrer, Heft 5, 1986

Bühlmann Memorial Symposium 2019 Decompression Problems in Space

Decompression Problems in Space (1)

Implications of DCS in Space Flight

- Drop from sea level pressure to ~4 psi, 100% O2 pressure
 - Equivalent to ascent from fully saturated 120 ft dive
 - Launch in early space flight
 - Extravehicular activity from shuttle or ISS

$$R = \frac{P_{N2}}{P_{amb}} = \frac{14.7(0.78)}{4} = 2.87$$

• To have "safe" (R=1.4) EVA from shuttle requires suit pressure of 8.2 psi

Decompression Problems in Space (2)

Current Denitrogenation Approaches

- Depress to 10.2 psi for 12-24 hours prior to EVA
 - Full cabin depress in shuttle
 - "Campout" in air lock module of ISS
- Exercise while breathing 100% O2
- In-suit decompression on 100% O2 (3.5-4 hours)

Decompression Problems in Space (3)

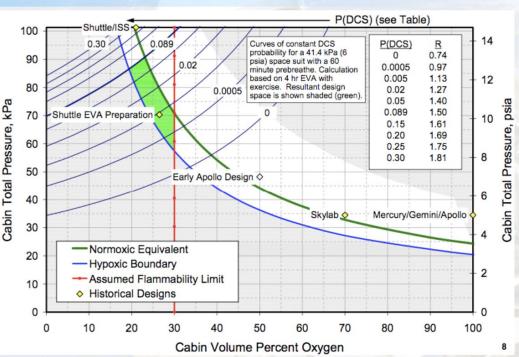
Historical Data on Cabin Atmospheres

Program	Cabin Pressure, kPa (psia)	Cabin Oxygen Concentration, volume %	EVA Suit Pressure, ⁽¹⁾ kPa (psia)	EVA O ₂ Pre- breathe Time, minutes	EVA Prebreathe Conditions
Mercury	34.5 (5)	100	-	-	-
Gemini/Apollo	34.5 (5)	100	25.8 (3.75)	0	-
Skylab	34.5 (5)	70	25.8 (3.75)	0	-
Shuttle	70.3 (10.2)	26.5	29.6 (4.3)	40	In-suit (after 36 hours at 70.3 kPa)
	101.3 (14.7)	21	29.6 (4.3)	240(3)	In-suit
ISS/US	101.3 (14.7)	21	29.6 (4.3)	120-140	Mask and in-suit; staged w/exercise
				240(3)	In-suit
Salyut, Mir, ISS/Russian	101.3 (14.7)	21	40.0 (5.8)(2)	30	In-suit

References: Carson, et al. (1975), McBarron, et al. (1993), Waligora, et al. (1993), NASA (2002), NASA (2003).

(1) 100% oxygen.

from Scheuring et. al., "Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles" 16th Annual Humans in Space, Beijing, China, May 2007


Fundamentals of Decompression ENAE 697 - Space Human Factors and Life Support

⁽²⁾ In earlier versions of the Orlan suit, the pressure could be reduced to 26.5 kPa (3.8 psia) for short-duration work regime.

⁽³⁾ Under emergency conditions, a minimum of 150 minutes of unbroken prebreathe is recommended.

Decompression Problems in Space (4)

Atmosphere Design Space with Constraints

from Scheuring et. al., "Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles" 16th Annual Humans in Space, Beijing, China, May 2007

Decompression Problems in Space (5)

Constellation Spacecraft Atmospheres

Environment	P _B psia mmHg	F ₁ O ₂ (%)	P _I O ₂ mmHg	P _A O ₂ mmHg	Actual Altitude m feet	Equivalent Air Altitude m feet
CEV + LSAM						
normal	8.0 414	32.0	117	77	4,877 16,000	1,829 6,000
best case	8.2 424	34.0	128	86	4,816 15,800	1,158 3,800
worse case	7.8 403	30.0	107	68	5,029 16,500	2,438 8,000
HABITAT						
normal	7.6 393	32.0	111	71	5,182 17,000	2,286 7,500
best case	7.8 403	34.0	121	80	5,029 16,500	1,524 5,000
worse case	7.4 383	30.0	101	63	5,364 17,600	2,895 9,500

from Scheuring et. al., "Risk Assessment of Physiological Effects of Atmospheric Composition and Pressure in Constellation Vehicles" 16th Annual Humans in Space, Beijing, China, May 2007

Professional and Diving Career

Born on 03.01.1953 in Bern (Switzerland), having a M.Sc. in Mech. Eng. from the Swiss Federal Institute of Technology (ETH), he has been working nearly 20 years in the computer science industry. From 2010 to his retirement in January 2016 he was working as a project manager in one of Switzerlands biggest enterprises, with focus on energy procurement.

Beat Müller holds a certificate as a National Instructor (I**** CMAS) and numerous other instructor and Instructor Trainer certifications from CMAS, NAUI, PADI, FASSAS and SCD. Appointed Staff Instructor Cave Diving by cmas.ch in 2004, he looks back on approx. 4500 dives all over the world.

In the mid-eighties, cooperation with Prof. Dr. A.A. Bühlmann in Zurich, with his direct involvement in the high altitude diving research- and test-program up to 2500m asl. He was the responsible software engineer who wrote the software for the famous '86 Bühlmann air-diving tables, as well as the high altitude dive tables for the diving expedition of a group of divers of the British Rhine Army at Lake Titicaca at 3800m asl. He also gave contributions to publications such as "Decompression – Decompression Sickness (Bühlmann) and "Deeper into Diving" (J. Lippman) and numerous training aids of the Swiss Federations SUSV and cmas.ch.

Other activities:2004 – 2008 Vice President of the Technical Committee of CMAS International, 2000-2013 Member of the Committee of Technical Diving of cmas.ch, from 2004 – 2013 Head of the Cave Diving Working Group in the Technical Committee of CMAS International. Working as an international ITC CMAS Course Director in Turkey, North Africa and Ireland. He is the author of the Cave Diving Standards and Training System of CMAS International and of Swiss Cave Diving.

Together with Fritz Schatzmann he is the author of the European reference book "Höhlentauchen" (engl.: "Cave Diving"), and "Cavern Diver" (in German and English), officially recommended by the World Underwater Federation CMAS.

He is also a founding member and former president until 2015 of the largest European cave diving association "Swiss Cave Diving" and co-owner of the registered trademarks "Swiss Cave Diving", "Swiss Cave Diving Instructors" and "Swiss Cave Divers". He is still working as a member of the board in the position of a Director of Standards.

Since 2006 he is the webmaster of the most visited cave diving website in Europe, <u>www.swiss-cave-diving.ch</u>. He lives with his wife in the greater Zurich area.

He has given numerous presentations on decompression modelling and on Prof. Bühlmann's work in Switzerland, many other European countries, North Africa and Mexico.

Other Activities of Preference...

(hanging on the deco-bar after a 80m Trimix dive at the Milford Haven, Genova)

